Carvedilol: a new candidate for reversal of MDR1/P-glycoprotein-mediated multidrug resistance.

Department of Hospital Pharmacy, School of Medicine, Kobe University, Kobe, Japan.

Anti-cancer drugs. 2004;(4):303-9

Abstract

In 1983, carvedilol [1-[carbazolyl-(4)-oxy]-3-[(2-methoxyphenoxyethyl)amino]-2-propanol] was designed and developed as a beta-adrenoceptor antagonist with vasodilating activity for efficacious and safe treatment of hypertension and coronary artery disease. Carvedilol belongs to the 'third generation' of beta-adrenoceptor antagonists and shows selectivity for the beta1- rather than beta2-adrenoceptor. Carvedilol is also an alpha1-blocking agents, with around 2- to 3-fold more selectivity for beta1- than alpha1-adrenoceptors. This degree of alpha1-blockade is responsible for the moderate vasodilator properties of carvedilol, being different from other beta-adrenoceptor antagonists. In addition, carvedilol is a potent antioxidant, with a 10-fold greater activity than vitamin E. Some carvedilol metabolites found in human plasma also exhibit antioxidative activity approximately 50- to 100-fold greater than carvedilol and other antioxidants. These unique properties of carvedilol, i.e. adrenergic (beta1, beta2 and alpha1) blockade and antioxidative activity, may be important in preventing progressive deterioration of left ventricular dysfunction and chronic heart failure. Recently, carvedilol has been demonstrated to reverse multidrug resistance (MDR) to anticancer drugs in tumor cells in vitro and its reversal effects were comparable with verapamil, which has been used in the first clinical trial for the reversal of MDR. This review introduces the reversal activity and usefulness against MDR, as well as an overview of the pharmacological and pharmacokinetic properties, of carvedilol.

Methodological quality

Publication Type : Review

Metadata