Association between duration of intravenous antibiotic administration and early-life microbiota development in late-preterm infants.

European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology. 2018;37(3):475-483

Plain language summary

Premature newborn babies are commonly given antibiotics in hospital to prevent or treat infections such as sepsis. This study, carried out in the Netherlands, looked at the effect of intravenous antibiotics on the development of the gut bacteria in premature babies. Stool samples were taken from 15 premature babies who had been exposed to either no antibiotic treatment, or short (less than 3 days) or long (at least 5 days) treatment with the commonly prescribed antibiotics amoxicillin or ceftazidime. At 3 weeks old, babies who had been treated with both short and long courses of antibiotics had significantly lower abundance of the beneficial bacteria Bifidobacterium than those who had received no antibiotics. In babies who received antibiotic treatment lasting 5 days or more, Bifidobacterium levels didn’t recover until they were 6 weeks old. Antibiotics were effective against Enterobacteriaceae, but allowed Enterococcus to thrive and remain dominant for up to two weeks after antibiotic treatment was stopped. The authors concluded that intravenous antibiotics during the first week of a baby’s life greatly affects the gut bacteria. However, short courses of antibiotics allow for a quicker recovery compared to longer courses. Disturbances in the development of gut bacteria caused by antibiotic treatment could influence the development of infants' immune and digestive systems.

Abstract

Antibiotic treatment is common practice in the neonatal ward for the prevention and treatment of sepsis, which is one of the leading causes of mortality and morbidity in preterm infants. Although the effect of antibiotic treatment on microbiota development is well recognised, little attention has been paid to treatment duration. We studied the effect of short and long intravenous antibiotic administration on intestinal microbiota development in preterm infants. Faecal samples from 15 preterm infants (35 ± 1 weeks gestation and 2871 ± 260 g birth weight) exposed to no, short (≤ 3 days) or long (≥ 5 days) treatment with amoxicillin/ceftazidime were collected during the first six postnatal weeks. Microbiota composition was determined through 16S rRNA gene sequencing and by quantitative polymerase chain reaction (qPCR). Short and long antibiotic treat ment significantly lowered the abundance of Bifidobacterium right after treatment (p = 0.027) till postnatal week three (p = 0.028). Long treatment caused Bifidobacterium abundance to remain decreased till postnatal week six (p = 0.009). Antibiotic treatment was effective against members of the Enterobacteriaceae family, but allowed Enterococcus to thrive and remain dominant for up to two weeks after antibiotic treatment discontinuation. Community richness and diversity were not affected by antibiotic treatment, but were positively associated with postnatal age (p < 0.023) and with abundance of Bifidobacterium (p = 0.003). Intravenous antibiotic administration during the first postnatal week greatly affects the infant's gastrointestinal microbiota. However, quick antibiotic treatment cessation allows for its recovery. Disturbances in microbiota development caused by short and, more extensively, by long antibiotic treatment could affect healthy development of the infant via interference with maturation of the immune system and gastrointestinal tract.

Lifestyle medicine

Fundamental Clinical Imbalances : Digestive, absorptive and microbiological
Patient Centred Factors : Mediators/Microbiome
Environmental Inputs : Xenobiotics
Personal Lifestyle Factors : Not applicable
Functional Laboratory Testing : Stool

Methodological quality

Allocation concealment : Not applicable
Publication Type : Journal Article ; Observational Study

Metadata

Nutrition Evidence keywords : Antibiotics ; Baby ; Babies ; Gut bacteria ; Microbiome ; Microbiota ; Stool tests