Prenatal and postnatal antibiotic exposure influences the gut microbiota of preterm infants in neonatal intensive care units.

Annals of clinical microbiology and antimicrobials. 2018;17(1):9
Full text from:

Plain language summary

Disturbances in gut bacteria could have long-term effects on a baby’s health. The development of healthy gut bacteria is influenced by factors such as the surrounding environment, gestational age, delivery mode, feeding method and exposure to antibiotics. The aim of this study was to investigate the effects of antibiotic exposure on the development of gut bacteria in premature babies. This study was carried out in a hospital in China. 28 premature babies who had been admitted to the neonatal intensive care unit were included in the study. Stool samples were collected when the babies were 7 and 14 days old. The researchers found that the characteristics of the gut bacteria in babies exposed to antibiotics was different to those who were not. The numbers of beneficial Bifidobacterium were significantly lower in those babies who had received antibiotics compared to those who had not. Exposure to antibiotics for more than 7 days led to increases in the presence of some strains of drug-resistant bacteria. The authors concluded that antibiotic exposure may affect the composition of early gut bacteria in premature babies which could potentially increase the risk of contracting harmful infections.

Abstract

BACKGROUND To explore the influences of prenatal antibiotic exposure, the intensity of prenatal and postnatal antibiotic exposure on gut microbiota of preterm infants and whether gut microbiota and drug resistant strains in the neonatal intensive care unit (NICU) over a defined period are related. METHODS Among 28 preterm infants, there were two groups, the PAT (prenatal antibiotic therapy) group (12 cases), and the PAF (prenatal antibiotic free) group (12 cases). Fecal samples from both groups were collected on days 7 and 14. According to the time of prenatal and postnatal antibiotic exposure, cases were divided into two groups, H (high) group (11 cases) and L (low) group (11 cases), and fecal samples on day 14 were collected. Genomic DNA was extracted from the fecal samples and was subjected to high throughput 16S rRNA amplicon sequencing. Bioinformatics methods were used to analyze the sequencing results. RESULTS Prenatal and postnatal antibiotic exposure exercised influence on the early establishment of intestinal microflora of preterm infants. Bacteroidetes decreased significantly in the PAT group (p < 0.05). The number of Bifidobacterium significantly decreased in the PAT group and H group (p < 0.05). The early gut microbiota of preterm infants with prenatal and postnatal antibiotic exposure was similar to resistant bacteria in NICU during the same period. CONCLUSION Prenatal and postnatal antibiotic exposure may affect the composition of early gut microbiota in preterm infants. Antibiotic-resistant bacteria in NICU may play a role in reshaping the early gut microbiota of preterm infants with prenatal and postnatal antibiotic exposure.

Lifestyle medicine

Fundamental Clinical Imbalances : Digestive, absorptive and microbiological
Patient Centred Factors : Mediators/Microbiome
Environmental Inputs : Xenobiotics
Personal Lifestyle Factors : Not applicable
Functional Laboratory Testing : Stool
Bioactive Substances : Antibiotics ; Bifidobacterium

Methodological quality

Allocation concealment : Not applicable
Publication Type : Journal Article

Metadata

Nutrition Evidence keywords : Antibiotics ; Babies ; Gut bacteria ; Microbiome ; Microbiota ; Bifidobacterium