Gut microbiota varies by opioid use, circulating leptin and oxytocin in African American men with diabetes and high burden of chronic disease.

PloS one. 2018;13(3):e0194171

Plain language summary

Obesity and type 2 diabetes (T2D) can lead to alterations of the composition of the gut microbiota. The gut microbiota, in turn, has been suggested to play a role in the development of psychological conditions, such as anxiety, depression and drug addiction. This cross-sectional study included 99 mostly overweight/obese African American men, with or without T2D, and with or without opioid addiction and other psychiatric disorders. The aim of the study was to determine, whether the gut microbiota composition was linked to T2D and the use of opioids in these patients. Furthermore, the researchers looked at the associations between leptin and oxytocin levels in the blood and the gut microbiota, and whether these hormone biomarkers could be indicative of obesity and psychosocial behaviour, such as opioid addiction. The authors found that some bacterial species in the gut were affected by T2D, diabetes medication and opioid use in the studied subjects. A relationship was also observed between leptin and oxytocin levels and the abundance of certain bacteria in the gut in subjects without T2D. The authors conclude that targeting the gut microbiota could be used for the management of T2D and associated psychiatric disorders. However, more studies are needed to provide further understanding of the connections between the gut microbiota and the brain.

Abstract

OBJECTIVE The gut microbiota is known to be related to type 2 diabetes (T2D), psychiatric conditions, and opioid use. In this study, we tested the hypothesis that variability in gut microbiota in T2D is associated with psycho-metabolic health. METHODS A cross-sectional study was conducted among African American men (AAM) (n = 99) that were outpatients at a Chicago VA Medical Center. The main outcome measures included fecal microbiota ecology (by 16S rRNA gene sequencing), psychiatric disorders including opioid use, and circulating leptin and oxytocin as representative hormone biomarkers for obesity and psychological pro-social behavior. RESULTS The study subjects had prevalent overweight/obesity (78%), T2D (50%) and co-morbid psychiatric (65%) and opioid use (45%) disorders. In the analysis of microbiota, the data showed interactions of opioids, T2D and metformin with Bifidobacterium and Prevotella genera. The differential analysis of Bifidobacterium stratified by opioids, T2D and metformin, showed significant interactions among these factors indicating that the effect of one factor was changed by the other (FDR-adjusted p [q] < 0.01). In addition, the pair-wise comparison showed that participants with T2D not taking metformin had a significant 6.74 log2 fold increase in Bifidobacterium in opioid users as compared to non-users (q = 2.2 x 10-8). Since metformin was not included in this pair-wise comparison, the significant 'q' suggested association of opioid use with Bifidobacterium abundance. The differences in Bifidobacterium abundance could possibly be explained by opioids acting as organic cation transporter 1 (OCT1) inhibitors. Analysis stratified by lower and higher leptin and oxytocin (divided by the 50th percentile) in the subgroup without T2D showed lower Dialister in High-Leptin vs. Low-Leptin (p = 0.03). Contrary, the opposite was shown for oxytocin, higher Dialister in High-Oxytocin vs. Low-Oxytocin (p = 0.04). CONCLUSIONS The study demonstrated for the first time that Bifidobacterium and Prevotella abundance was affected by interactions of T2D, metformin and opioid use. Also, in subjects without T2D Dialister abundance varied according to circulating leptin and oxytocin.

Lifestyle medicine

Fundamental Clinical Imbalances : Digestive, absorptive and microbiological
Patient Centred Factors : Mediators/opioids
Environmental Inputs : Xenobiotics
Personal Lifestyle Factors : Not applicable
Functional Laboratory Testing : Blood ; Stool
Bioactive Substances : Opioids ; Metformin ; Leptin ; Oxytocin ; Gamma-aminobutyric acid ; GABA

Methodological quality

Allocation concealment : Not applicable

Metadata