Gut microbiota alterations associated with reduced bone mineral density in older adults.

Rheumatology (Oxford, England). 2019;58(12):2295-2304

Plain language summary

Osteoporosis, characterised by reduced bone density or ‘brittle bones’ affects a significant number of individuals over the age of 50 worldwide. Contributing factors include calcium and vitamin D deficiency and the presence of other inflammatory conditions. The composition of gut bacteria, the gut microbiome, plays an important role in immune activity and changes in composition have been associated with other inflammatory conditions. This cohort study of 181 individuals at high risk of reduced bone density and fractures, aimed to determine whether different gut microbiota composition is associated with bone density. Dexa scans and faecal samples were used as part of the assessment and confounding factors of diet, BMI, supplementation and medication were included in the analysis. The authors of the study found 6 species of gut bacteria that were significantly altered in numbers in the groups with osteoporosis and osteopenia, after controlling for confounding factors, and suggest that they could be used as markers of disease risk or progression and as a therapeutic target. Nutrition Practitioners working with bone density can focus on supporting the gut microbiome as part of their nutrition protocols.

Abstract

OBJECTIVE To investigate compositional differences in the gut microbiota associated with bone homeostasis and fractures in a cohort of older adults. METHODS Faecal microbiota profiles were determined from 181 individuals with osteopenia (n = 61) or osteoporosis (n = 60), and an age- and gender-matched group with normal BMD (n = 60). Analysis of the 16S (V3-V4 region) amplicon dataset classified to the genus level was used to identify significantly differentially abundant taxa. Adjustments were made for potential confounding variables identified from the literature using several statistical models. RESULTS We identified six genera that were significantly altered in abundance in the osteoporosis or osteopenic groups compared with age- and gender-matched controls. A detailed study of microbiota associations with meta-data variables that included BMI, health status, diet and medication revealed that these meta-data explained 15-17% of the variance within the microbiota dataset. BMD measurements were significantly associated with alterations in the microbiota. After controlling for known biological confounders, five of the six taxa remained significant. Overall microbiota alpha diversity did not correlate to BMD in this study. CONCLUSION Reduced BMD in osteopenia and osteoporosis is associated with an altered microbiota. These alterations may be useful as biomarkers or therapeutic targets in individuals at high risk of reductions in BMD. These observations will lead to a better understanding of the relationship between the microbiota and bone homeostasis.

Lifestyle medicine

Fundamental Clinical Imbalances : Digestive, absorptive and microbiological ; Structural
Environmental Inputs : Diet ; Microorganisms
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Stool ; Imaging
Bioactive Substances : Vitamin D

Methodological quality

Allocation concealment : Not applicable

Metadata

Nutrition Evidence keywords : Gut microbiome ; Inflammation