Crosstalk between the microbiome and epigenome: messages from bugs.

Journal of biochemistry. 2018;163(2):105-112

Plain language summary

Trillions of microbes live symbiotically in and on an individual human being, most of them inside the digestive tract and communally known as the gut microbiome. The gut microbiome plays a vital role in the individual host’s health, not only by helping digest food and harvest energy, but also by regulating immune development and influencing gene expression. Diet and factors, such as infections and the use of antibiotics, can alter the balance of the microbiome and lead to various outcomes. This paper reviewed the current understanding of the ways in which the gut microbiome is capable of altering the host’s gene expression through microbial signals, including metabolites, bile acids, inflammation and altered composition. The studies highlighted in the paper show that gut microbes communicate both with local cells in the intestines and with more distant organs, such as the liver and the cardiovascular system. Through this communication, they can regulate the expression of immune cells, cancer cells, enzymes and inflammation-related molecules. The authors concluded that these interactions, or the crosstalk between the microbes and the host, demonstrate a crucial role of the gut microbiome in the host’s response to environmental signals. However, many of the mechanisms are still unclear, so further studies are needed to explain specific microbe-derived signals, affecting host gene expression, and to deepen our understanding of how lifestyle, health status and environmental exposures, such as antibiotics, regulate the microbiome and its influence.

Abstract

Mammals exist in a complicated symbiotic relationship with their gut microbiome, which is postulated to have broad impacts on host health and disease. As omics-based technologies have matured, the potential mechanisms by which the microbiome affects host physiology are being addressed. The gut microbiome, which provides environmental cues, can modify host cell responses to stimuli through alterations in the host epigenome and, ultimately, gene expression. Increasing evidence highlights microbial generation of bioactive compounds that impact the transcriptional machinery in host cells. Here, we review current understanding of the crosstalk between gut microbiota and the host epigenome, including DNA methylation, histone modification and non-coding RNAs. These studies are providing insights into how the host responds to microbial signalling and are predicted to provide information for the application of precision medicine.

Lifestyle medicine

Patient Centred Factors : Mediators/gut microbiome
Environmental Inputs : Diet ; Nutrients ; Xenobiotics
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Not applicable

Methodological quality

Allocation concealment : Not applicable
Publication Type : Journal Article ; Review

Metadata