A whole-grain diet reduces peripheral insulin resistance and improves glucose kinetics in obese adults: A randomized-controlled trial.

Metabolism: clinical and experimental. 2018;82:111-117

Plain language summary

Literature shows that dietary whole-grain intake is associated with a lower incidence of type 2 diabetes. The aim of the study was to investigate the association between a whole-grain diet and insulin resistance and glucose use in individuals at risk for type 2 diabetes. The study was a randomized, double-blind, controlled crossover trial involving fourteen middle-aged, obese adults at risk for diabetes. Randomisation was carried out prior to metabolic testing. Results indicate that whole-grain intake as part of a mixed-meal diet significantly improved post-prandial (after a meal) glucose metabolism in middle-aged obese adults. Furthermore, both whole-grain and refined-grain interventions induced about 3–6% weight and fat loss. Authors conclude that whole-grain intake effectively promotes glycaemic control by improving insulin action.

Abstract

BACKGROUND Whole-grain intake is associated with lower risk of type 2 diabetes but the mechanisms are unclear. PURPOSE We tested the hypothesis that a WG diet reduces insulin resistance and improves glucose use in individuals at risk for type 2 diabetes compared with an isocaloric-matched refined-grain diet. METHODS A double-blind, randomized, controlled, crossover trial of 14 moderately obese adults (Age, 38 ± 2 y; BMI, 34.0 ± 1.1 kg/m2). Insulin resistance and glucose metabolism was assessed using an oral glucose tolerance test combined with isotopic tracers of [6,6-2H2]-glucose and [U-13C]-glucose, and indirect calorimetry. Peripheral and hepatic insulin resistance was assessed as 1/(rate of disposal/insulin), and endogenous glucose rates of appearance (Ra) iAUC60-240 × insulin iAUC60-240, respectively. Both diets met ADA nutritional guidelines and contained either whole-grain (50 g per 1000 kcal) or equivalent refined-grain. All food was provided for 8 wk. with an 8-10 wk. washout period between diets. RESULTS Post-prandial glucose tolerance, peripheral insulin sensitivity, and metabolic flexibility (insulin-stimulated - fasting carbohydrate oxidation) improvements were greater after whole-grain compared to the refined-grain diet (P < 0.05). Compared to baseline, body fat (~2 kg) and hepatic Ra insulin resistance was reduced by both diets, while fasting glucose and exogenous glucose-meal were unchanged after both interventions. Changes in peripheral insulin resistance and metabolic flexibility correlated with improved glucose tolerance (P < 0.05). CONCLUSION Whole-grains reduced diabetes risk and the mechanisms appear to work through reduced post-prandial blood glucose and peripheral insulin resistance that were statistically linked to enhanced metabolic flexibility.

Lifestyle medicine

Fundamental Clinical Imbalances : Hormonal ; Structural
Patient Centred Factors : Triggers/Whole-grain diet
Environmental Inputs : Diet ; Nutrients
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Blood ; Urine ; Imaging

Methodological quality

Jadad score : 4
Allocation concealment : Yes

Metadata