Chronic Ketogenic Low Carbohydrate High Fat Diet Has Minimal Effects on Acid-Base Status in Elite Athletes.

Nutrients. 2018;10(2)
Full text from:

Plain language summary

The low-fat, high-carbohydrate ketogenic diet has recently been applied to the context of elite athletes to observe potential impact on performance and metabolism during exercise and rest. The aim to this study was to assess the effect of a long-term ketogenic diet on the acid-base status in elite athletes, particularly investigating whether sustained diet change caused alterations in overall acid production. Twenty-one athletes were assigned to a high carbohydrate diet, low carbohydrate diet and periodised carbohydrate availability diet for three sustained weeks. Acid-base balance was measured via blood samples at baseline and post-intervention. The main finding of this study was that a sustained ketogenic diet had no influence of acid-base status. Based on these results, the authors conclude that long-term manipulation of macronutrient intake is unlikely to influence acid-base status in this population. It is also noted that elite athletes may have an increased buffering capacity compared with the general population, and that further research should be done in different participant populations.

Abstract

Although short (up to 3 days) exposure to major shifts in macronutrient intake appears to alter acid-base status, the effects of sustained (>1 week) interventions in elite athletes has not been determined. Using a non-randomized, parallel design, we examined the effect of adaptations to 21 days of a ketogenic low carbohydrate high fat (LCHF) or periodized carbohydrate (PCHO) diet on pre- and post-exercise blood pH, and concentrations of bicarbonate (HCO₃-) and lactate (La-) in comparison to a high carbohydrate (HCHO) control. Twenty-four (17 male and 7 female) elite-level race walkers completed 21 days of either LCHF (n = 9), PCHO (n = 7), or HCHO (n = 8) under controlled diet and training conditions. At baseline and post-intervention, blood pH, blood [HCO₃-], and blood [La-] were measured before and after a graded exercise test. Net endogenous acid production (NEAP) over the previous 48-72 h was also calculated from monitored dietary intake. LCHF was not associated with significant differences in blood pH, [HCO₃-], or [La-], compared with the HCHO diet pre- or post-exercise, despite a significantly higher NEAP (mEq·day-1) (95% CI = [10.44; 36.04]). Our results indicate that chronic dietary interventions are unlikely to influence acid-base status in elite athletes, which may be due to pre-existing training adaptations, such as an enhanced buffering capacity, or the actions of respiratory and renal pathways, which have a greater influence on regulation of acid-base status than nutritional intake.

Lifestyle medicine

Patient Centred Factors : Mediators/Ketogenic diet
Environmental Inputs : Diet ; Nutrients
Personal Lifestyle Factors : Nutrition ; Exercise and movement
Functional Laboratory Testing : Blood ; Breath
Bioactive Substances : Bicarbonate ; Lactate

Methodological quality

Allocation concealment : Not applicable
Publication Type : Clinical Study ; Journal Article

Metadata