A Pilot Study To Investigate the Immune-Modulatory Effects of Fasting in Steroid-Naive Mild Asthmatics.

Journal of immunology (Baltimore, Md. : 1950). 2018;201(5):1382-1388
Full text from:

Plain language summary

Previous studies have shown that caloric restriction and fasting may modulate immune function and have positive effects in asthmatics. The aim of this pilot study was to evaluate the effects of fasting on specific inflammatory markers that might mediate such benefits. 18 mild asthmatics, 5 of whom were not on steroid inhalers, fasted for 24 hours. Lung function and immune parameters were evaluated at baseline and 2.5 hours after the first meal following the fast. There were significant differences between subjects who were and were not on steroid inhalers. Whilst one day of fasting did not affect lung function, a number of inflammatory parameters were improved by fasting in those not taking steroid inhalers, but not in those who were taking steroids. The authors conclude that caloric restriction might be considered as a strategy to improve systemic and pulmonary inflammation in asthma.

Abstract

undefined: A fasting mimetic diet blunts inflammation, and intermittent fasting has shown ameliorative effects in obese asthmatics. To examine whether canonical inflammatory pathways linked with asthma are modulated by fasting, we designed a pilot study in mild asthmatic subjects to assess the effect of fasting on the NLRP3 inflammasome, Th2 cell activation, and airway epithelial cell cytokine production. Subjects with documented reversible airway obstruction and stable mild asthma were recruited into this study in which pulmonary function testing (PFT) and PBMCextraction was performed 24 h after fasting, with repeated PFT testing and blood draw 2.5 h after refeeding. PFTs were not changed by a prolonged fast. However, steroid-naive mild asthmatics showed fasting-dependent blunting of the NLRP3 inflammasome. Furthermore, PBMCs from these fasted asthmatics cocultured with human epithelial cells resulted in blunting of house dust mite-induced epithelial cell cytokine production and reduced CD4 T cell Th2 activation compared with refed samples. This pilot study shows that prolonged fasting blunts the NLRP3 inflammasome and Th2 cell activation in steroid-naive asthmatics as well as diminishes airway epithelial cell cytokine production. This identifies a potential role for nutrient level-dependent regulation of inflammation in asthma. Our findings support the evaluation of this concept in a larger study as well as the potential development of caloric restriction interventions for the treatment of asthma.

Lifestyle medicine

Fundamental Clinical Imbalances : Immune and inflammation
Patient Centred Factors : Mediators/Fasting
Environmental Inputs : Diet ; Nutrients
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Blood ; Tissue biopsy

Methodological quality

Jadad score : 0
Allocation concealment : Not applicable

Metadata