The Role of Lung and Gut Microbiota in the Pathology of Asthma.

Immunity. 2020;52(2):241-255

Plain language summary

Over 300 million people suffer with asthma worldwide and it has emerged that microbiome analysis of the lung and gut bacteria, fungi, viruses, and archaea may help with disease management. This microbiome plays an important role in immune response. Disturbances to these microbes, known as dysbiosis, may influence onset of disease and the body’s ability to respond naturally, and/or to pharmaceutical treatments. Asthma is not a singular disease and there are great variations in symptom severity and underlying immune mechanisms. Patients are typically classified as type 2 or non-type 2. Type 2 patients tend to be allergic to common air-born allergens which can trigger an attack. Treatment usually consists of glucocorticosteroids or novel biologicals. Non type-2 asthma is associated with obesity-related asthma and typically responds poorly to steroid treatment. For a long time, researchers believed the human lungs to be sterile, so they were initially not included in the 2007 Human Microbiome Project. It has since been shown that, like the gut, the lungs and respiratory tract also host various microbes, and this healthy-airway microbiota influence innate and adaptive immune processes. The Gut-Lung axis also confers additional microbial benefits from the intestines. In asthma patients, there is often an over-dominance of pathogenic bacteria. Fungal dysbiosis is associated with high-risk asthma phenotypes in childhood. Viral infections have been shown as a primary cause of asthmatic episodes. Future diagnosis and treatment of patients with asthma should be assisted by analysis of the composition and metabolic activity of an individual’s microbiome.


Asthma is a common chronic respiratory disease affecting more than 300 million people worldwide. Clinical features of asthma and its immunological and molecular etiology vary significantly among patients. An understanding of the complexities of asthma has evolved to the point where precision medicine approaches, including microbiome analysis, are being increasingly recognized as an important part of disease management. Lung and gut microbiota play several important roles in the development, regulation, and maintenance of healthy immune responses. Dysbiosis and subsequent dysregulation of microbiota-related immunological processes affect the onset of the disease, its clinical characteristics, and responses to treatment. Bacteria and viruses are the most extensively studied microorganisms relating to asthma pathogenesis, but other microbes, including fungi and even archaea, can potently influence airway inflammation. This review focuses on recently discovered connections between lung and gut microbiota, including bacteria, fungi, viruses, and archaea, and their influence on asthma.

Lifestyle medicine

Fundamental Clinical Imbalances : Immune and inflammation
Patient Centred Factors : Triggers/Lung microbiota
Environmental Inputs : Microorganisms
Personal Lifestyle Factors : Nutrition ; Environment
Functional Laboratory Testing : Not applicable
Bioactive Substances : Bacteria ; Fungi ; Viruses ; Arachea

Methodological quality

Allocation concealment : Not applicable


Nutrition Evidence keywords : Asthma ; Lung microbiome ; Gut microbiome ; Lung microbiota ; Gut microbiota