Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake.

Gut. 2020;69(7):1258-1268

Plain language summary

Evidence suggests that the Mediterranean diet (MD) may help prevent cardiovascular disease (CVD). However, this could be influenced by an individual’s gut microbiome, highlighting a need for personalised nutrition practices. This randomised crossover control trial aimed to evaluate an 8-week personalised MD intervention in 82 overweight and obese subjects, who were at high risk of cardiovascular disease. The results showed that a personalised MD lowered cholesterol, regardless of the amount of energy consumed and the amount of exercise performed and relied upon adherence to the MD. Gut microbiome composition was altered by a MD and although markers for diabetes were not improved overall, there was an improvement in prediabetes in individuals with higher levels of Bacteroides species and lower levels of Prevotella species. It was concluded that a MD may reduce cholesterol and alter the gut microbiome to benefit cardiovascular health. Health professionals could use this study to switch patients to a MD whilst maintaining their energy intake to reduce cardiovascular risk. In order to see maximum benefit, it would be recommended to take a personalised approach and analyse an individual’s gut microbiome in order to tailor recommendations.

Abstract

OBJECTIVES This study aimed to explore the effects of an isocaloric Mediterranean diet (MD) intervention on metabolic health, gut microbiome and systemic metabolome in subjects with lifestyle risk factors for metabolic disease. DESIGN Eighty-two healthy overweight and obese subjects with a habitually low intake of fruit and vegetables and a sedentary lifestyle participated in a parallel 8-week randomised controlled trial. Forty-three participants consumed an MD tailored to their habitual energy intakes (MedD), and 39 maintained their regular diets (ConD). Dietary adherence, metabolic parameters, gut microbiome and systemic metabolome were monitored over the study period. RESULTS Increased MD adherence in the MedD group successfully reprogrammed subjects' intake of fibre and animal proteins. Compliance was confirmed by lowered levels of carnitine in plasma and urine. Significant reductions in plasma cholesterol (primary outcome) and faecal bile acids occurred in the MedD compared with the ConD group. Shotgun metagenomics showed gut microbiome changes that reflected individual MD adherence and increase in gene richness in participants who reduced systemic inflammation over the intervention. The MD intervention led to increased levels of the fibre-degrading Faecalibacterium prausnitzii and of genes for microbial carbohydrate degradation linked to butyrate metabolism. The dietary changes in the MedD group led to increased urinary urolithins, faecal bile acid degradation and insulin sensitivity that co-varied with specific microbial taxa. CONCLUSION Switching subjects to an MD while maintaining their energy intake reduced their blood cholesterol and caused multiple changes in their microbiome and metabolome that are relevant in future strategies for the improvement of metabolic health.

Lifestyle medicine

Patient Centred Factors : Mediators/Cardiovascular disease/diet
Environmental Inputs : Diet ; Nutrients ; Physical exercise
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Blood ; Stool ; Urine

Methodological quality

Jadad score : 1
Allocation concealment : No

Metadata