Plain language summary
The bidirectional communication between the gastrointestinal tract and the brain, termed the gut-brain axis (GBA), is evidenced to to play a role in physiological and psychological health. While precise communication pathways are not yet clear, it is hypothesised this pathway may be an important therapeutic target in complex psychiatric and gastrointestinal disorders. The aim of this review is to summarize the role of gut hormones in the GBA and focus on how the microbiota interact with these hormones in health and disease. The literature shows the gut microbiota can affect the metabolism of various gut hormones, and these hormones can influence the microbiota. Evidence suggests this cross-talk may be a key regulator in appetite, immune response, stress response, and metabolism. Based on this review, the authors conclude the gut microbiota-hormone homeostatic relationship provides insight on the complex communication between the gut and the brain. They suggest future research should target the microbiota-hormones-gut-brain axis to develop new therapeutic strategies to psychiatric disorders.
Abstract
The homeostasis of the gut-brain axis has been shown to exert several effects on physiological and psychological health. The gut hormones released by enteroendocrine cells scattered throughout the gastrointestinal tract are important signaling molecules within the gut-brain axis. The interaction between gut microbiota and gut hormones has been greatly appreciated in gut-brain cross-talk. The microbiota plays an essential role in modulating many gut-brain axis-related diseases, ranging from gastrointestinal disorders to psychiatric diseases. Similarly, gut hormones also play pleiotropic and important roles in maintaining health, and are key signals involved in gut-brain axis. More importantly, gut microbiota can affect the release and functions of gut hormones. This review highlights the role of gut microbiota in the gut-brain axis and focuses on how microbiota-related gut hormones modulate various physiological functions. Future studies could target the microbiota-hormones-gut brain axis to develop novel therapeutics for different psychiatric and gastrointestinal disorders, such as obesity, anxiety, and depression.
Methodological quality
Jadad score
:
Not applicable
Allocation concealment
:
Not applicable