Links between metabolic syndrome and the microbiome.

Evolution, medicine, and public health. 2020;2020(1):45-46
Full text from:

Other resources

Plain language summary

Metabolic syndrome (MetS) is a cluster of co-occurring pathological conditions, characterised by insulin resistance, abdominal obesity, hypertension and dyslipidaemia One possible factor contributing to MetS risk is change in microbiome composition. Diets high in processed foods appear to alter microbiome composition in ways that promote higher fat mass and insulin resistance. Additionally, a sedentary lifestyle decreases microbiome diversity, elevating inflammation and metabolic disease risk. Research on how the microbiome responds to modest, attainable changes in diet and physical activity will help identify which dietary adjustments and exercise types have the greatest potential to protect patients from MetS.

Abstract

Metabolic syndrome (MetS) is a cluster of harmful conditions which occur together, such as insulin resistance, abdominal obesity, and hypertension. The global prevalence of MetS is growing rapidly, with some estimates suggesting over one billion people worldwide experience increased morality and disease rates linked with this syndrome. One possible factor contributing to MetS risk is changes in microbiome composition. Approximately 100 trillion bacteria and other microbes reside in the human intestinal tract, collectively termed the gut microbiome. Humans and microbes share a long evolutionary history, with many of these microbes influencing human health outcomes. However, environmental conditions have changed dramatically with human technological innovations; many of these changes (e.g., diets high in processed foods and sedentary lifestyles) appear to impact human-microbe relationships. In general, recent changes in diet and activity patterns have been linked to decreased microbiome diversity, elevating inflammation and metabolic disease risk and likely promoting the development of MetS. Targeting patient diet or exercise patterns may therefore help doctors better treat patients suffering from MetS. Still, additional work is needed to determine how the microbiome responds to changes in patient activity and diet patterns across culturally and biologically diverse human populations.

Lifestyle medicine

Fundamental Clinical Imbalances : Digestive, absorptive and microbiological
Patient Centred Factors : Mediators/Metabolic syndrome/microbiome
Environmental Inputs : Diet ; Nutrients ; Physical exercise
Personal Lifestyle Factors : Nutrition ; Exercise and movement
Functional Laboratory Testing : Not applicable

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable
Publication Type : Case Reports

Metadata