Association of Major Food Sources of Fructose-Containing Sugars With Incident Metabolic Syndrome: A Systematic Review and Meta-analysis.

JAMA network open. 2020;3(7):e209993

Plain language summary

Fructose is a type of sugar that has been implicated as a contributor to the development of metabolic syndrome (MetS), which is a condition where large waist circumference, high blood pressure and elevated blood lipid levels may all coexist. However, it remains unclear as to the role of fructose containing foods in the development of MetS. This systematic review and meta-analysis of 13 prospective cohort studies aimed to determine the association of several fructose containing foods and drinks with MetS. The results showed that sugary drinks containing fructose increased the risk of MetS, whereas no associations were found with mixed fruit juice, 100% fruit juice, honey, ice cream or confectionary. Interestingly fruit and yoghurt containing fructose decreased the risk of developing MetS. It was concluded that fructose containing food and drinks are not all equal in their biological effects. Sugary drinks increased the risk of developing MetS but yoghurt and fruit had a protective effect against development. Reasons for this could be due to a generally unhealthier lifestyle in those who consume sugary drinks or may be due to the increased protective effects associated with the vitamins and minerals in fruit and yoghurt. This study could be used by healthcare professionals to recommend a diet eliminating sugary drinks and containing regular fruit and yoghurt intake.


Importance: Sugar-sweetened beverages (SSBs) are associated with increased risk of metabolic syndrome (MetS). However, the role of other important food sources of fructose-containing sugars in the development of MetS remains unclear. Objective: To examine the association of major food sources of fructose-containing sugars with incident MetS. Data Sources: MEDLINE, Embase, and Cochrane Library were searched from database inception to March 24, 2020, in addition to manual searches of reference lists from included studies using the following search terms: sugar-sweetened beverages, fruit drink, yogurt, metabolic syndrome, and prospective study. Study Selection: Inclusion criteria included prospective cohort studies of 1 year or longer that investigated the association of important food sources of fructose-containing sugars with incident MetS in participants free of MetS at the start of the study. Data Extraction and Synthesis: Study quality was assessed using the Newcastle-Ottawa Scale. Extreme quantile risk estimates for each food source with MetS incidence were pooled using a random-effects meta-analysis. Interstudy heterogeneity was assessed (Cochran Q statistic) and quantified (I2 statistic). Dose-response analyses were performed using a 1-stage linear mixed-effects model. The certainty of the evidence was assessed using GRADE (Grading of Recommendations, Assessment, Development, and Evaluation). Results were reported according to the Meta-analysis of Observational Studies in Epidemiology (MOOSE) and Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines. Main Outcomes and Measures: Pooled risk ratio (RR) of incident MetS (pairwise and dose response). Results: Thirteen prospective cohort studies (49 591 participants [median age, 51 years; range, 6-90 years]; 14 205 with MetS) that assessed 8 fructose-containing foods and MetS were included. An adverse linear dose-response association for SSBs (RR for 355 mL/d, 1.14; 95% CI, 1.05-1.23) and an L-shaped protective dose-response association for yogurt (RR for 85 g/d, 0.66; 95% CI, 0.58-0.76) and fruit (RR for 80 g/d, 0.82; 95% CI, 0.78-0.86) was found. Fruit juices (mixed and 100%) had a U-shaped dose-response association with protection at moderate doses (mixed fruit juice: RR for 125 mL/d, 0.58; 95% CI, 0.42-0.79; 100% fruit juice: RR for 125 mL/d, 0.77; 95% CI, 0.61-0.97). Honey, ice cream, and confectionary had no association with MetS incidence. The certainty of the evidence was moderate for SSBs, yogurt, fruit, mixed fruit juice, and 100% fruit juice and very low for all other food sources. Conclusions and Relevance: The findings of this meta-analysis suggest that the adverse association of SSBs with MetS does not extend to other food sources of fructose-containing sugars, with a protective association for yogurt and fruit throughout the dose range and for 100% fruit juice and mixed fruit juices at moderate doses. Therefore, current policies and guidelines on the need to limit sources of free sugars may need to be reexamined.

Lifestyle medicine

Fundamental Clinical Imbalances : Hormonal ; Immune and inflammation
Patient Centred Factors : Triggers/Sugar sweetened beverages
Environmental Inputs : Diet ; Nutrients
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Not applicable

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable