SARS-CoV-2 and immune-microbiome interactions: Lessons from respiratory viral infections.

International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2021;105:540-550
Full text from:

Plain language summary

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped RNA beta-coronavirus. This virus caused the coronavirus disease 2019 (COVID-19) pandemic. The aim of this review was to investigate the relationship between microbiota, immunity, and COVID-19, with particular focus on how microbiome-associated immune crosstalk can shape outcome of COVID-19. The study included 118 articles which investigated or reviewed COVID-19 or coronavirus and the microbiome of the gut or respiratory tract. Findings indicate that: - an over-activated immune system leads to massive pulmonary damage in COVID-19 patients. - the effect of aging and comorbidities, and the use of antibiotics have an effect on the diversity of the microbiota. - the milieu of gut flora can exert influence on pulmonary immune responses. - a unique cross-talk exists between the pulmonary and gut microbial compartments. Authors conclude by highlighting the need of further studies that delineate the role of the microbiota and their products in the immune dysregulation observed in SARS-CoV-2 infections.

Abstract

By the beginning of 2020, infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had rapidly evolved into an emergent worldwide pandemic, an outbreak whose unprecedented consequences highlighted many existing flaws within public healthcare systems across the world. While coronavirus disease 2019 (COVID-19) is bestowed with a broad spectrum of clinical manifestations, involving the vital organs, the respiratory system transpires as the main route of entry for SARS-CoV-2, with the lungs being its primary target. Of those infected, up to 20% require hospitalization on account of severity, while the majority of patients are either asymptomatic or exhibit mild symptoms. Exacerbation in the disease severity and complications of COVID-19 infection have been associated with multiple comorbidities, including hypertension, diabetes mellitus, cardiovascular disorders, cancer, and chronic lung disease. Interestingly, a recent body of evidence indicated the pulmonary and gut microbiomes as potential modulators for altering the course of COVID-19, potentially via the microbiome-immune system axis. While the relative concordance between microbes and immunity has yet to be fully elucidated with regards to COVID-19, we present an overview of our current understanding of COVID-19-microbiome-immune cross talk and discuss the potential contributions of microbiome-related immunity to SARS-CoV-2 pathogenesis and COVID-19 disease progression.

Lifestyle medicine

Patient Centred Factors : Mediators/COVID-19
Environmental Inputs : Xenobiotics ; Microorganisms
Personal Lifestyle Factors : Environment
Functional Laboratory Testing : Not applicable

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable
Publication Type : Journal Article ; Review

Metadata

Nutrition Evidence keywords : Hypertension ; Diabetes mellitus ; Microbiome ; Microbiota ; Dysbiosis ; Obesity