Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders.

Nutrients. 2021;13(6)
Full text from:

Plain language summary

Imbalances in the gut microbiota occur in various neurological disorders including Alzheimer’s disease (AD), Parkinson’s disease (PD), autism spectrum disorder and depression. Imbalances in key neurotransmitters are associated with the same disorders. This review focuses on the regulatory mechanisms of the intestinal microbiome and its metabolites on cognitive functions and the pathogeneses of these neurodegenerative diseases. The gut microbiota produce neurotransmitters such as glutamate, GABA, serotonin and dopamine or their precursors. These neurotransmitters are not able to cross the blood brain barrier but the precursors are, therefore the gut microbiota is indirectly involved in the regulation of the production of these key neurotransmitters and therefore neuronal activity and cognitive functions of the brain. The findings demonstrate an association between a healthy gut microbiome structure and balanced neurotransmitter levels in the host. Microbial therapy holds huge promise for the treatment of brain disorders. The development of drugs for neurological disorders must also consider effects on the physiology of the gut microbiome.

Abstract

Emerging evidence indicates that gut microbiota is important in the regulation of brain activity and cognitive functions. Microbes mediate communication among the metabolic, peripheral immune, and central nervous systems via the microbiota-gut-brain axis. However, it is not well understood how the gut microbiome and neurons in the brain mutually interact or how these interactions affect normal brain functioning and cognition. We summarize the mechanisms whereby the gut microbiota regulate the production, transportation, and functioning of neurotransmitters. We also discuss how microbiome dysbiosis affects cognitive function, especially in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.

Lifestyle medicine

Fundamental Clinical Imbalances : Digestive, absorptive and microbiological
Patient Centred Factors : Mediators/Dysbiosis
Environmental Inputs : Diet ; Nutrients ; Microorganisms
Personal Lifestyle Factors : Not applicable
Functional Laboratory Testing : Stool
Bioactive Substances : Probiotics

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable
Publication Type : Journal Article ; Review

Metadata