The Influence of n-3PUFA Supplementation on Muscle Strength, Mass, and Function: A Systematic Review and Meta-Analysis.

Advances in nutrition (Bethesda, Md.). 2023;14(1):115-127

Other resources

Plain language summary

Omega 3 polyunsaturated fatty acids (n-3PUFA) are long-chain polyunsaturated fatty acids essential to human health. They play a role in cell membrane integrity, immune and inflammation regulation, cognition and neuromuscular function. As the human body cannot make these fatty acids, they need to be obtained through diet or supplementation. Regarding skeletal muscle, recent research showed that n-3PUFAs may increase the uptake of amino acids by increasing the membrane fluidity in the muscle, and by activating pathways that inhibit protein breakdown. This led to the hypothesis that n-3PUFAs may enhance muscle mass gain and strength. This systematic review sought to gather all available evidence about the impact of n-3PUFA supplementation on muscle mass, strength, and function in healthy young and older adults. The review included 14 studies with a total of 1443 participants. The authors found that n-3PUFA supplementation had no significant effect on muscle mass or muscle function in healthy young and older adults, however, a very small but significant positive effect was noted regarding muscle strength. In the discussion section, the authors explain the challenges of their review and how these findings integrate with the current understanding and other research findings. They concluded more research is needed to get a better insight into the effects of n-3PUFA on muscle function and the variants.

Abstract

The effects of omega 3 polyunsaturated fatty acids (n-3PUFA) supplementation on skeletal muscle are currently unclear. The purpose of this systematic review was to synthesize all available evidence regarding the influence of n-3PUFA supplementation on muscle mass, strength, and function in healthy young and older adults. Four databases were searched (Medline, Embase, Cochrane CENTRAL, and SportDiscus). Predefined eligibility criteria were determined according to Population, Intervention, Comparator, Outcomes, and Study Design. Only peer-reviewed studies were included. The Cochrane RoB2 Tool and the NutriGrade approach were used to access risk of bias and certainty in evidence. Effect sizes were calculated using pre-post scores and analyzed using a three-level, random-effects meta-analysis. When sufficient studies were available, subanalyses were performed in the muscle mass, strength, and function outcomes according to participant's age (<60 or ≥60 years), supplementation dosage (<2 or ≥2 g/day), and training intervention ("resistance training" vs. "none or other"). Overall, 14 individual studies were included, total 1443 participants (913 females; 520 males) and 52 outcomes measures. Studies had high overall risk of bias and consideration of all NutriGrade elements resulted in a certainty assessment of moderate meta-evidence for all outcomes. n-3PUFA supplementation had no significant effect on muscle mass (standard mean difference [SMD] = 0.07 [95% CI: -0.02, 0.17], P = 0.11) and muscle function (SMD = 0.03 [95% CI: -0.09, 0.15], P = 0.58), but it showed a very small albeit significant positive effect on muscle strength (SMD = 0.12 [95% CI: 0.006, 0.24], P = 0.04) in participants when compared with placebo. Subgroup analyses showed that age, supplementation dose, or cosupplementation alongside resistance training did not influence these responses. In conclusion, our analyses indicated that n-3PUFA supplementation may lead to very small increases in muscle strength but did not impact muscle mass and function in healthy young and older adults. To our knowledge, this is the first review and meta-analysis investigating whether n-3PUFA supplementation can lead to increases in muscle strength, mass, and function in healthy adults. Registered protocol: doi.org/10.17605/OSF.IO/2FWQT.

Lifestyle medicine

Fundamental Clinical Imbalances : Detoxification and biotransformational ; Structural
Environmental Inputs : Diet ; Nutrients
Personal Lifestyle Factors : Nutrition ; Exercise and movement
Functional Laboratory Testing : Not applicable

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable

Metadata