-
1.
Effects of dietary fibers or probiotics on functional constipation symptoms and roles of gut microbiota: a double-blinded randomized placebo trial.
Lai, H, Li, Y, He, Y, Chen, F, Mi, B, Li, J, Xie, J, Ma, G, Yang, J, Xu, K, et al
Gut microbes. 2023;15(1):2197837
-
-
-
Free full text
-
Plain language summary
Functional constipation is characterised by continuously difficult, incomplete, or infrequent defecation, without an organic origin. Effective intervention strategies are required to relieve the functional constipation difficulties, particularly in rapidly aging populations, such as Chinese populations. The aim of this study was to evaluate the effectiveness of three dietary fibre formulas (polydextrose, psyllium husk, and wheat bran + psyllium husk) and one probiotic supplement on the improvement of constipation symptoms among Chinese adults with functional constipation. This study was a double-blinded randomised placebo-controlled trial which enrolled 250 participants who were randomly assigned to one of the five groups. Results showed: - that daily supplement of three prebiotic formulas with dietary fibres, or a probiotic formula effectively relieved hard stool in functional constipation patients after 4 weeks intervention. - the capacity of gut microbial genera in shaping the intervention responsiveness in the improvement of bowel movement frequency, Bristol stool scale score, and degree of defecation straining. Authors conclude that the pre or probiotic interventions may modulate gut microbiota, associated with intestinal health.
Abstract
Dietary fibers/probiotics may relieve constipation via optimizing gut microbiome, yet with limited trial-based evidences. We aimed to evaluate the effects of formulas with dietary fibers or probiotics on functional constipation symptoms, and to identify modulations of gut microbiota of relevance. We conducted a 4-week double-blinded randomized placebo-controlled trial in 250 adults with functional constipation. Intervention: A: polydextrose; B: psyllium husk; C: wheat bran + psyllium husk; D: Bifidobacterium animalis subsp. lactis HN019 + Lacticaseibacillus rhamnosus HN001; Placebo: maltodextrin. Oligosaccharides were also included in group A to D. 16S rRNA sequencing was used to assess the gut microbiota at weeks 0, 2, and 4. A total of 242 participants completed the study. No time-by-group effect was observed for bowel movement frequency (BMF), Bristol stool scale score (BSS), and degree of defecation straining (DDS), while BSS showed mean increases of 0.95-1.05 in group A to D (all P < 0.05), but not significantly changed in placebo (P = 0.170), and 4-week change of BSS showed similarly superior effects of the interventions as compared placebo. Group D showed a marginal reduction in plasma 5-hydroxytryptamine. Group A resulted in a higher Bifidobacterium abundance than placebo at week 2 and 4. Fourteen genera showed intervention-specific increasing or decreasing trends continuously, among which Anaerostipes showed increasing trends in groups B and C, associated with BMF increase. Random forest models identified specific baseline microbial genera panels predicting intervention responders. In conclusion, we found that the dietary fibers or probiotics may relieve hard stool, with intervention-specific changes in gut microbiota relevant to constipation relief. Baseline gut microbiota may predispose the intervention responsiveness. ClincialTrials.gov number, NCT04667884. What is the context?Supplementation of dietary fibers, such as psyllium husk or wheat bran (10 ~ 15 g/day) may relieve constipation symptoms, but bloating and flatulence are major concerns on a high fiber intake.Functional constipation patients had alternated gut microbiota profiles, while meta-analysis suggested that multispecies probiotics may increase bowel movement frequency and relieve hard stool in functional constipation.Dietary fibers or probiotics may lead to before-after changes of gut microbiota in patients with functional constipation, but time-series continued changes of gut microbiota during the intervention are unknown.Elevation of 5-hydroxytryptamine synthesis in enterochromaffin cells may affect bowel movement. And the elevated plasma 5-hydroxytryptamine was observed in functional constipation patients.What is new? Daily supplement of three prebiotic formulas with dietary fibers (polydextrose, psyllium husk, wheat bran, together with oligosaccharides), or a probiotic formula with Bifidobacterium animalis subsp. lactis HN019 + Lacticaseibacillus rhamnosus HN001 effectively relieved hard stool in functional constipation patients after 4 weeks intervention.We identified continued increasing or decreasing gut microbial genera over the intervention. Dietary fiber – gut microbiota (Anaerostipes)—constipation relieve (bowel movement frequency) evidence axis was identified in this human trial.Probiotic supplementation marginally reduced plasma 5-hydroxytryptamine, possibly associated with changes in BMF-related gut microbial genera.Intervention-specific baseline gut microbiota well predicted the responsiveness of constipation symptom relief.What is the impact? We provided references for the dosage and duration of dietary fiber/probiotics recommendations for adults with functional constipation, and advanced the microbial genera evidences of the fibers/probiotics-microbiota-laxation theory in humans.
-
2.
Wild blueberry (poly)phenols can improve vascular function and cognitive performance in healthy older individuals: a double-blind randomized controlled trial.
Wood, E, Hein, S, Mesnage, R, Fernandes, F, Abhayaratne, N, Xu, Y, Zhang, Z, Bell, L, Williams, C, Rodriguez-Mateos, A
The American journal of clinical nutrition. 2023;117(6):1306-1319
-
-
-
Free full text
-
Plain language summary
The risk of developing both cardiovascular and neurodegenerative diseases increases with aging. Growing evidence from epidemiological and human intervention trials indicates that (poly)phenols may have cardioprotective properties as well as the ability to improve cognitive function. The aim of this study was to investigate the effects of daily wild blueberry (WBB) (poly)phenol consumption on vascular function and cognitive performance in healthy older individuals. This study was a randomised, double-blinded, placebo-controlled parallel design study. A total of 61 healthy older individuals were recruited and randomly assigned to one of the two arms; placebo intervention or blueberry intervention group. Results showed that long-term consumption of a dietary achievable amount of WBB enhanced vascular and cognitive function in older adults. Authors conclude that gut microbiota and vascular blood flow may play important roles in mediating the cognitive benefits shown by the consumption of (poly)phenol-rich foods.
Abstract
BACKGROUND Evidence suggests that the intake of blueberry (poly)phenols is associated with improvements in vascular function and cognitive performance. Whether these cognitive effects are linked to increases in cerebral and vascular blood flow or changes in the gut microbiota is currently unknown. METHODS A double-blind, parallel randomized controlled trial was conducted in 61 healthy older individuals aged 65-80 y. Participants received either 26 g of freeze-dried wild blueberry (WBB) powder (302 mg anthocyanins) or a matched placebo (0 mg anthocyanins). Endothelial function measured by flow-mediated dilation (FMD), cognitive function, arterial stiffness, blood pressure (BP), cerebral blood flow (CBF), gut microbiome, and blood parameters were measured at baseline and 12 wk following daily consumption. Plasma and urinary (poly)phenol metabolites were analyzed using microelution solid-phase extraction coupled with liquid chromatography-mass spectrometry. RESULTS A significant increase in FMD and reduction in 24 h ambulatory systolic BP were found in the WBB group compared with the placebo group (0.86%; 95% CI: 0.56, 1.17, P < 0.001; -3.59 mmHg; 95% CI: -6.95, -0.23, P = 0.037; respectively). Enhanced immediate recall on the auditory verbal learning task, alongside better accuracy on a task-switch task was also found following WBB treatment compared with placebo (P < 0.05). Total 24 h urinary (poly)phenol excretion increased significantly in the WBB group compared with placebo. No changes in the CBF or gut microbiota composition were found. CONCLUSIONS Daily intake of WBB powder, equivalent to 178 g fresh weight, improves vascular and cognitive function and decreases 24 h ambulatory systolic BP in healthy older individuals. This suggests that WBB (poly)phenols may reduce future CVD risk in an older population and may improve episodic memory processes and executive functioning in older adults at risk for cognitive decline. Clinical Trial Registration number in clinicaltrials.gov: NCT04084457.
-
3.
Functional response to a microbial synbiotic in the gastrointestinal system of children: a randomized clinical trial.
Tierney, BT, Versalovic, J, Fasano, A, Petrosino, JF, Chumpitazi, BP, Mayer, EA, Boetes, J, Smits, G, Parkar, SG, Voreades, N, et al
Pediatric research. 2023;93(7):2005-2013
-
-
-
Free full text
-
Plain language summary
The composition of the human gut microbiome has been identified as playing a role in regulating bowel movements in children. This includes functional constipation, which is characterised by infrequent bowel movements and associated phenotypes such as stool consistency, pain when defecating and bloating. The aim of this study was to determine the impact of a nine-strain (eight species) synbiotic (a prebiotic and defined microbial consortium) formulation (with the prebiotic comprising mixed-chain length oligosaccharides) on ameliorating constipation. This study was a multicentre, randomised, double-blind, and placebo-controlled with two parallel arms. Ninety-one healthy male/female subjects were recruited and randomly assigned to one of the two arms; treatment or placebo group. Results showed that: - compared to placebo, synbiotic use increased weekly bowel movements (WBMs) in constipated children. - there was an increased abundance of the administered probiotic species (bifidobacteria) in the treatment arm. - baseline microbial richness demonstrated potential as a predictive biomarker for response to intervention. Authors conclude that a synbiotic formulation may increase weekly WBMs in children who have low-frequency WBMs.
Abstract
BACKGROUND Oral microbial therapy has been studied as an intervention for a range of gastrointestinal disorders. Though research suggests that microbial exposure may affect the gastrointestinal system, motility, and host immunity in a pediatric population, data have been inconsistent, with most prior studies being in neither a randomized nor placebo-controlled setting. The aim of this randomized, placebo-controlled study was to evaluate the efficacy of a synbiotic on increasing weekly bowel movements (WBMs) in constipated children. METHODS Sixty-four children (3-17 years of age) were randomized to receive a synbiotic (n = 33) comprising mixed-chain length oligosaccharides and nine microbial strains, or placebo (n = 31) for 84 days. Stool microbiota was analyzed on samples collected at baseline and completion. The primary outcome was a change from baseline of WBMs in the treatment group compared to placebo. RESULTS Treatment increased (p < 0.05) the number of WBMs in children with low baseline WBMs, despite broadly distinctive baseline microbiome signatures. Sequencing revealed that low baseline microbial richness in the treatment group significantly anticipated improvements in constipation (p = 0.00074). CONCLUSIONS These findings suggest the potential for (i) multi-species-synbiotic interventions to improve digestive health in a pediatric population and (ii) bioinformatics-based methods to predict response to microbial interventions in children. IMPACT Synbiotic microbial treatment improved the number of spontaneous weekly bowel movements in children compared to placebo. Intervention induced an increased abundance of bifidobacteria in children, compared to placebo. All administered probiotic species were enriched in the gut microbiome of the intervention group compared to placebo. Baseline microbial richness demonstrated potential as a predictive biomarker for response to intervention.
-
4.
Psychobiotic Lactobacillus plantarum JYLP-326 relieves anxiety, depression, and insomnia symptoms in test anxious college via modulating the gut microbiota and its metabolism.
Zhu, R, Fang, Y, Li, H, Liu, Y, Wei, J, Zhang, S, Wang, L, Fan, R, Wang, L, Li, S, et al
Frontiers in immunology. 2023;14:1158137
-
-
-
Free full text
Plain language summary
Test anxiety, characterised by feelings of failure, tension, and worrying when an individual faces a vital test for promoting, occurs prevalently among college students. Lactobacillus plantarum, has become increasingly popular in reducing the severity of anxiety and depression in stressed animal models. The main aim of this study was to evaluate the psychological effects of Lactobacillus plantarum JYLP-326 (JYLP-326) on exam stress-induced behaviours like anxiety, depression, and insomnia. This study enrolled 60 anxious and 30 un-anxious undergraduates preparing for the approaching exams. Out of the 60 anxious participants, 30 were selected randomly to receive the probiotic product and the other 30 received a placebo product. The 30 un-anxious students were assigned as the healthy control group. Results demonstrated that the intervention of JYLP-326 is effective in alleviating exam stress-induced symptoms in college students. Furthermore, it also protected against exam stress-induced dysbiosis of the gut microbiota and the disturbances of faecal metabolomic. Authors conclude that the changed gut microbiota genera and faecal metabolites were closely associated with stress-related symptoms like anxiety/depression and insomnia, indicating that they might be regarded as biomarkers for diagnosing and treating stress and anxiety disorders.
Abstract
INTRODUCTION Test anxiety is a common issue among college students, which can affect their physical and psychological health. However, effective interventions or therapeutic strategies are still lacking. This study aims to evaluate the potential effects of Lactobacillus plantarum JYLP-326 on test anxious college students. METHODS Sixty anxious students were enrolled and randomly allocated to the placebo group and the probiotic group. Both groups were instructed to take placebo and JYLP-326 products twice per day for three weeks, respectively. Thirty unanxious students with no treatments were assigned to a regular control group. The anxiety, depression, and insomnia questionnaires were used to measure students' mental states at the baseline and the end of this study. 16S rRNA sequencing and untargeted metabolomics were performed to analyze the changes in the gut microbiota and fecal metabolism. RESULTS The questionnaire results suggested that JYLP-326 administration could relieve the symptoms of anxiety, depression, and insomnia in test anxious students. The gut microbiomes of the placebo group showed a significantly greater diversity index than the control group (p < 0.05). An increased abundance of Bacteroides and Roseburia at the genus level was observed in the placebo group, and the relative abundance of Prevotella and Bifidobacterium decreased. Whereas, JYLP-326 administration could partly restore the disturbed gut microbiota. Additionally, test anxiety was correlated with disordered fecal metabolomics such as a higher Ethyl sulfate and a lower Cyclohexylamine, which could be reversed after taking JYLP-326. Furthermore, the changed microbiota and fecal metabolites were significantly associated with anxiety-related symptoms. CONCLUSION The results indicate that the intervention of L. plantarum JYLP-326 could be an effective strategy to alleviate anxiety, depression, and insomnia in test anxious college students. The potential mechanism underlying this effect could be related to the regulation of gut microbiota and fecal metabolites.
-
5.
High-fiber diet ameliorates gut microbiota, serum metabolism and emotional mood in type 2 diabetes patients.
Chen, L, Liu, B, Ren, L, Du, H, Fei, C, Qian, C, Li, B, Zhang, R, Liu, H, Li, Z, et al
Frontiers in cellular and infection microbiology. 2023;13:1069954
-
-
-
Free full text
Plain language summary
Accumulating studies have demonstrated that there are strong correlations between type 2 diabetes mellitus (T2DM) and gut microbiota. A nutritious diet composed of an adequate level of dietary fibres could provide enough carbohydrates for the gut microbiota to ferment, and the microbial metabolites could provide energy supply and regulate the immune function of the host. The aim of this study was to analyse the changes in gut microbiota, serum metabolism and emotional mood of patients with T2DM after consumption of a high-fibre diet. This study was a randomised, open-label, parallel-group clinical trial in T2DM patients with a 4-week treatment period. Seventeen patients clinically diagnosed with T2DM enrolled in the clinical trial and were randomly assigned into two groups: the control group (n = 8) or the intervention group (n = 9). Results showed that the high-fibre diet (compared to the control group): - improved glucose homeostasis and lipid metabolism of participants with T2DM; - decreased serum levels of inflammatory chemokines in participants with T2DM; - alleviated depression and anxiety symptoms, particularly by the uptake of more diverse carbohydrates in the diet in participants with T2DM; - enhanced the diversity of gut microbiota in the treatment group. Authors conclude that the dietary source of fibre demonstrated protective impacts on the gut ecosystem, and the alteration of the gut microbiota composition improved the glucose homeostasis in patients with T2DM.
Abstract
Previous studies have demonstrated that patients with type 2 diabetes mellitus (T2DM) often had the problems of fecal microbiota dysbiosis, and were usually accompanied with psychiatric comorbidities (such as depression and anxiety). Here, we conducted a randomized clinical study to analyze the changes in gut microbiota, serum metabolism and emotional mood of patients with T2DM after consumption of a high-fiber diet. The glucose homeostasis of participants with T2DM was improved by the high-fiber diet, and the serum metabolome, systemic inflammation and psychiatric comorbidities were also altered. The increased abundances of Lactobacillus, Bifidobacterium and Akkermansias revealed that the proportions of beneficial gut microbes were enriched by the high-fiber diet, while the abundances of Desulfovibrio, Klebsiella and other opportunistic pathogens were decreased. Therefore, the current study demonstrated that the intestinal microbiota alterations which were influenced by the high-fiber diet could improve the serum metabolism and emotional mood of patients with T2DM.
-
6.
Effects of Gut Microbiome Modulation on Reducing Adverse Health Outcomes among Elderly and Diabetes Patients during the COVID-19 Pandemic: A Randomised, Double-Blind, Placebo-Controlled Trial (IMPACT Study).
Wong, MCS, Zhang, L, Ching, JYL, Mak, JWY, Huang, J, Wang, S, Mok, CKP, Wong, A, Chiu, OL, Fung, YT, et al
Nutrients. 2023;15(8)
-
-
-
Free full text
Plain language summary
Worldwide, the coronavirus disease 2019 (COVID-19) pandemic has posed a substantial challenge in terms of its induced morbidity and mortality to the general population. Patients with diabetes and elderly individuals are particularly vulnerable during the pandemic. The aim of this study was to assess the efficacy of a novel microbiome immunity formula (SIM01) in reducing adverse health outcomes in the elderly and patients with type two diabetes mellitus during the COVID-19 pandemic. This study was a double-blind, randomised, parallel-arm, placebo-controlled trial. Participants were randomly assigned to receive a microbiome immunity formula (SIM01) or placebo in a 1:1 ratio for three months. Results showed that SIM01, could reduce adverse health outcomes, improve quality of life, and restore gut dysbiosis among elderly subjects and patients with type two diabetes during the COVID-19 pandemic. In fact, SIM01 not only replenished Bifidobacteria but also favoured the coexistence of other beneficial species. Authors conclude that their findings provide significant societal implications for strategies that could protect these vulnerable individuals during the COVID-19 pandemic.
Abstract
Gut microbiota is believed to be a major determinant of health outcomes. We hypothesised that a novel oral microbiome formula (SIM01) can reduce the risk of adverse health outcomes in at-risk subjects during the coronavirus disease 2019 (COVID-19) pandemic. In this single-centre, double-blind, randomised, placebo-controlled trial, we recruited subjects aged ≥65 years or with type two diabetes mellitus. Eligible subjects were randomised in a 1:1 ratio to receive three months of SIM01 or placebo (vitamin C) within one week of the first COVID-19 vaccine dose. Both the researchers and participants were blinded to the groups allocated. The rate of adverse health outcomes was significantly lower in the SIM01 group than the placebo at one month (6 [2.9%] vs. 25 [12.6], p < 0.001) and three months (0 vs. 5 [3.1%], p = 0.025). At three months, more subjects who received SIM01 than the placebo reported better sleep quality (53 [41.4%] vs. 22 [19.3%], p < 0.001), improved skin condition (18 [14.1%] vs. 8 [7.0%], p = 0.043), and better mood (27 [21.2%] vs. 13 [11.4%], p = 0.043). Subjects who received SIM01 showed a significant increase in beneficial Bifidobacteria and butyrate-producing bacteria in faecal samples and strengthened the microbial ecology network. SIM01 reduced adverse health outcomes and restored gut dysbiosis in elderly and diabetes patients during the COVID-19 pandemic.
-
7.
The effect of vitamin D supplementation on the gut microbiome in older Australians - Results from analyses of the D-Health Trial.
Pham, H, Waterhouse, M, Rahman, S, Baxter, C, Duarte Romero, B, McLeod, DSA, Ebeling, PR, English, DR, Hartel, G, O'Connell, RL, et al
Gut microbes. 2023;15(1):2221429
-
-
-
Free full text
-
Plain language summary
Microbiota are communities of microorganisms that co-exist with the host ecosystem in a specific environment. The term microbiome refers to the microbial genome. The aim of this study was to investigate the effect of supplementing older adults with 60,000 IU of vitamin D per month on the gut microbiome for a period of five years, using a subsample (n = 835) of participants recruited from the large population-based D-Health Trial. This study is based on a subsample from the D-Health Trial, which was a randomised, double-blind trial with two parallel arms. Participants were randomly allocated (1:1 ratio) to monthly doses of either 60,000 IU of cholecalciferol (vitamin D3) or matching placebo. Results showed that monthly doses of 60,000 IU vitamin D over 5 years did not alter the composition of the gut microbiome in a population that is largely vitamin D replete. Authors conclude that further investigation is required to examine whether non-bolus doses of vitamin D would influence the gut microbiome or whether vitamin D supplementation would be beneficial in populations with a higher prevalence of vitamin D deficiency.
Abstract
Observational studies suggest a link between vitamin D and the composition of the gut microbiome, but there is little evidence from randomized controlled trials of vitamin D supplementation. We analyzed data from the D-Health Trial, a randomized, double-blind, placebo-controlled trial. We recruited 21,315 Australians aged 60-84 y and randomized them to 60,000 IU of vitamin D3 or placebo monthly for 5 y. Stool samples were collected from a sample of 835 participants (417 in the placebo and 418 in the vitamin D group) approximately 5 y after randomization. We characterized the gut microbiome using 16S rRNA gene sequencing. We used linear regression to compare alpha diversity indices (i.e. Shannon index (primary outcome), richness, inverse Simpson index), and the ratio of Firmicutes to Bacteroidetes between the two groups. We analyzed between-sample (beta) diversity (i.e. Bray Curtis distance and UniFrac index) using principal coordinate analysis and used PERMANOVA to test for significant clustering according to randomization group. We also assessed the difference in the abundance of the 20 most abundant genera between the two groups using negative binomial regression model with adjustment for multiple testing. Approximately half the participants included in this analysis were women (mean age 69.4 y). Vitamin D supplementation did not alter the Shannon diversity index (mean 3.51 versus 3.52 in the placebo and vitamin D groups, respectively, p = 0.50). Similarly, there was little difference between the groups for other alpha diversity indices, the abundance of different genera, and the Firmicutes-to-Bacteroidetes ratio. We did not observe clustering of bacterial communities according to randomization group. In conlusion, monthly doses of 60,000 IU of vitamin D supplementation for 5 y did not alter the composition of the gut microbiome in older Australians.
-
8.
Alternate-Day Fasting Combined with Exercise: Effect on Sleep in Adults with Obesity and NAFLD.
Ezpeleta, M, Gabel, K, Cienfuegos, S, Kalam, F, Lin, S, Pavlou, V, Varady, KA
Nutrients. 2023;15(6)
-
-
-
Free full text
Plain language summary
Non-alcoholic fatty liver disease (NAFLD) is defined as the presence of 5% or more fat in the liver, confirmed by hepatic imaging or biopsy. Poor sleep may adversely affect insulin sensitivity and inflammatory status, thereby contributing to the development and progression of NAFLD. The aim of this study was to investigate how intermittent fasting combined with exercise impacts body weight and sleep measures in adults with NAFLD. This study was a secondary analysis of a 3-month randomised, controlled, parallel-arm study. Participants were randomized to 1 of 4 intervention groups: alternate-day fasting (ADF) plus exercise, ADF alone, exercise alone, or a no-intervention control group. Results showed that intermittent fasting combined with exercise produced significant reductions in body weight and intrahepatic triglyceride content but no changes in sleep quality, duration, insomnia severity, or risk of obstructive sleep apnoea. Authors conclude that the weight loss induced by ADF combined with exercise does not improve sleep quality, duration, insomnia severity or risk of obstructive sleep apnea in individuals with obesity and NAFLD.
Abstract
Objective: This study investigated how alternate-day fasting (ADF) combined with aerobic exercise impacts body weight and sleep in adults with non-alcoholic fatty liver disease (NAFLD). Methods: Adults with obesity and NAFLD (n = 80) were randomized into one of four groups for 3 months: combination of ADF (600 kcal "fast day," alternated with an ad libitum intake "feast day") and moderate-intensity aerobic exercise (five sessions per week, 60 min/session); ADF alone; exercise alone; or a no-intervention control group. Results: By month 3, body weight and intrahepatic triglyceride content decreased (p < 0.001, group × time interaction) in the combination group versus the exercise group and control group, but not versus the ADF group. Sleep quality, measured by the Pittsburgh Sleep Quality Inventory (PSQI), did not change in the combination group (baseline: 6.0 ± 0.7; month 3: 5.6 ± 0.7), ADF group (baseline: 8.9 ± 1.0; month 3: 7.5 ± 0.8), or exercise group (baseline: 6.4 ± 0.6; month 3: 6.7 ± 0.6), versus controls (baseline: 5.5 ± 0.7; month 3: 4.6 ± 0.5). Wake time, bedtime, sleep duration, and insomnia severity did not change (no group x time interaction) over the course of the study in any group. Risk for obstructive sleep apnea was present in 30% of combination subjects, 75% of ADF subjects, 40% of exercise subjects, and 75% of controls, and did not change in the intervention groups, versus controls, by month 3. No associations were observed between changes in body weight, intrahepatic triglyceride content, and any sleep outcome. Conclusions: The weight loss induced by ADF combined with exercise does not improve sleep quality, duration, insomnia severity, or risk of obstructive sleep apnea in individuals with NAFLD.
-
9.
Pre-sleep Protein Ingestion Increases Mitochondrial Protein Synthesis Rates During Overnight Recovery from Endurance Exercise: A Randomized Controlled Trial.
Trommelen, J, van Lieshout, GAA, Pabla, P, Nyakayiru, J, Hendriks, FK, Senden, JM, Goessens, JPB, van Kranenburg, JMX, Gijsen, AP, Verdijk, LB, et al
Sports medicine (Auckland, N.Z.). 2023;53(7):1445-1455
-
-
-
Free full text
-
Plain language summary
Protein intake prior to overnight sleep has been shown to stimulate muscle protein synthesis overnight and increase muscle mass. This randomised, placebo-controlled, double-blind study of 36 healthy young men compared the effects of pre-sleep casein and whey protein, following a bout of endurance training in the evening. Outcome measures were overnight protein synthesis rates in microfibrils (the contractile organelle of muscle cells) and mitochondria (the energy producing organelle). Ingestion of whey protein resulted in a statistically significantly higher rates of both microfibrillar and mitochondrial protein synthesis compared to placebo. Results for casein were intermediate and not significantly different from either placebo or whey. Both casein and whey protein intake led to a significant increase in circulating total and essential amino acids overnight, compared to placebo, with the whey protein leading to a quicker and casein to a slower but more sustained increase, although the overall increase (area under the curve) did not differ between the two protein groups. There were no differences in sleep, hunger or energy intake at breakfast between groups. The authors conclude that pre-sleep protein intake following endurance exercise increases both microfibrillar and mitochondrial protein synthesis overnight, with casein not being superior to whey.
Abstract
BACKGROUND Casein protein ingestion prior to sleep has been shown to increase myofibrillar protein synthesis rates during overnight sleep. It remains to be assessed whether pre-sleep protein ingestion can also increase mitochondrial protein synthesis rates. Though it has been suggested that casein protein may be preferred as a pre-sleep protein source, no study has compared the impact of pre-sleep whey versus casein ingestion on overnight muscle protein synthesis rates. OBJECTIVE We aimed to assess the impact of casein and whey protein ingestion prior to sleep on mitochondrial and myofibrillar protein synthesis rates during overnight recovery from a bout of endurance-type exercise. METHODS Thirty-six healthy young men performed a single bout of endurance-type exercise in the evening (19:45 h). Thirty minutes prior to sleep (23:30 h), participants ingested 45 g of casein protein, 45 g of whey protein, or a non-caloric placebo. Continuous intravenous L-[ring-13C6]-phenylalanine infusions were applied, with blood and muscle tissue samples being collected to assess overnight mitochondrial and myofibrillar protein synthesis rates. RESULTS Pooled protein ingestion resulted in greater mitochondrial (0.087 ± 0.020 vs 0.067 ± 0.016%·h-1, p = 0.005) and myofibrillar (0.060 ± 0.014 vs 0.047 ± 0.011%·h-1, p = 0.012) protein synthesis rates when compared with placebo. Casein and whey protein ingestion did not differ in their capacity to stimulate mitochondrial (0.082 ± 0.019 vs 0.092 ± 0.020%·h-1, p = 0.690) and myofibrillar (0.056 ± 0.009 vs 0.064 ± 0.018%·h-1, p = 0.440) protein synthesis rates. CONCLUSIONS Protein ingestion prior to sleep increases both mitochondrial and myofibrillar protein synthesis rates during overnight recovery from exercise. The overnight muscle protein synthetic response to whey and casein protein does not differ. CLINICAL TRIAL REGISTRATION NTR7251 .
-
10.
Changes in objectively measured sleep after a multidisciplinary lifestyle intervention in children with abdominal obesity: A randomized trial.
Catalán-Lambán, A, Ojeda-Rodríguez, A, Marti Del Moral, A, Azcona-Sanjulian, C
Sleep medicine. 2023;109:252-260
-
-
-
Free full text
-
Plain language summary
The main factors that contribute to obesity are genetics, excessive energy intake, decreased physical activity, and sedentarism. Sleep duration, sleep timing and chronotype have also recently been recognised as possible risk factors for obesity in children. The aim of this study was to assess the effectiveness of an intervention (usual care vs. intervention group) on sleep quality and its relationship with changes in biochemical and metabolic syndrome related anthropometric parameters. This study was a randomised controlled trial. The multidisciplinary intervention consisted of a two-year program that comprised a 2-month intensive phase with individual and group sessions and a follow-up period at 12 and 24 months. Subjects were randomly assigned to the usual care or intervention group at a ratio of 1:3. Results showed that a lifestyle intervention improved most sleep parameters in children and adolescents with abdominal obesity. In fact, the lifestyle intervention showed a reduction in anthropometric indexes and several biochemical parameters, and improved sleep quality at 2, 12, and 24 months of follow-up. Decreasing sleep latency, awakenings duration and wakefulness after sleep onset (WASO) also accompanied improved sleep efficiency. Authors conclude that their findings add to the growing body of research on the relationship between sleep and metabolic health outcomes in children, emphasizing the need to consider multiple dimensions of sleep beyond just sleep duration.
Abstract
BACKGROUND/OBJECTIVE childhood obesity and sleep disorders have a well-established cross-sectional association, but lifestyle interventions' effects on sleep quality remain under-researched. This study aimed to evaluate the sleep quality of 122 participants (7-16 years) with abdominal obesity after a 2-year necessary lifestyle intervention. PATIENTS/METHODS participants were assigned to either the intervention group (moderate hypocaloric Mediterranean Diet) or the usual care group (standard recommendations on a healthy diet). Sleep was objectively assessed using triaxial accelerometry, and sleep parameters analyzed included latency, efficiency, wake after sleep onset, total time in bed, total sleep time, number of awakenings, and awakening duration. RESULTS AND CONCLUSIONS the results showed that the intervention group significantly improved sleep latency at 12 and 24 months and improved sleep efficiency at 2 and 12 months, compared to the usual care group. Wake after sleep onset and the number of awakenings were significantly reduced at 24 months in the intervention group. Wake after sleep onset and leptin levels were positively associated in all participants. Total time in bed was inversely associated with triglycerides and metabolic score, and total sleep time was inversely associated with leptin, triglycerides, and metabolic score after the 2-month intervention. Triglyceride levels were inversely associated with total time in bed and total sleep time at one year, while the metabolic score was directly associated with wake after sleep onset and the number of awakenings and inversely associated with efficiency. In conclusion, the multidisciplinary intervention in children and adolescents with abdominal obesity reduced anthropometric parameters and improved sleep habits.