0
selected
-
1.
Gut Microbiota and Pathophysiology of Depressive Disorder.
Kunugi, H
Annals of nutrition & metabolism. 2021;77 Suppl 2:11-20
-
-
-
Free full text
-
Plain language summary
Bidirectional communication between the brain and gastrointestinal tract has been established and evidence suggests the microbiota-gut-brain axis may play a role in many psychiatric diseases, including major depression disorder (MDD). Although there is currently no established biochemical marker used in the clinical setting, recent findings have identified four potential mechanisms underlying MDD. The aim of this review is to outline these mechanisms and summarise the current evidence related to the pathophysiology of MDD. The literature suggests the gut microbiota impacts each of the potential mechanisms in the pathophysiology of MDD, and recent clinical trials on probiotics indicate beneficial effects on depression symptoms. Based on these results, the author concludes that practices leading to a healthier gut microbiota may aid in the reduction of depression symptoms. Future research on the microbiota-gut-brain axis in MDD is a promising avenue for better understanding the pathophysiology of disease and developing improved treatments for MDD.
Abstract
BACKGROUND Accumulating evidence has suggested that the bi-directional communication pathway, the microbiota-gut-brain axis, plays an important role in the pathophysiology of many neuropsychiatric diseases including major depressive disorder (MDD). This review outlines current evidence and promising findings related to the pathophysiology and treatment of MDD. SUMMARY There are at least 4 key biological molecules/systems underlying the pathophysiology of MDD: central dopamine, stress responses by the hypothalamic-pituitary-adrenal axis and autonomic nervous system, inflammation, and brain-derived neurotrophic factor. Animal experiments in several depression models have clearly indicated that gut microbiota is closely related to these molecules/systems and administration of probiotics and prebitotics may have beneficial effects on them. Although the results of microbiota profile of MDD patients varied from a study to another, multiple studies reported that bacteria which produce short-chain fatty acids such as butyrate and those protective against metabolic diseases (e.g., Bacteroidetes) were reduced. Clinical trials of probiotics have emerged, and the majority of the studies have reported beneficial effects on depression symptoms and related biological markers. Key Messages: The accumulating evidence suggests that research on the microbiota-gut-brain axis in major depressive disorder (MDD) is promising to elucidate the pathophysiology and to develop novel treatment of MDD, although there is still a long distance yet to reach the goals.
-
2.
The Differences between Gluten Sensitivity, Intestinal Biomarkers and Immune Biomarkers in Patients with First-Episode and Chronic Schizophrenia.
Dzikowski, M, Juchnowicz, D, Dzikowska, I, Rog, J, Próchnicki, M, Kozioł, M, Karakula-Juchnowicz, H
Journal of clinical medicine. 2020;9(11)
-
-
-
Free full text
Plain language summary
Schizophrenia is a heterogeneous neuroimmune disorder with unknown mechanisms and aetiology. The goal of this clinical study was to compare and evaluate IgG and IgA sensitivity, inflammation, and gut integrity between 52 first episode Schizophrenia patients, 50 chronic Schizophrenia patients, and 60 healthy controls to explain whether there were any associations between these markers. Study results show that antigliadin IgG and IgA antibodies, as well as inflammatory markers such as hs-CRP and IL-6, were significantly higher in the first episodes of schizophrenia and chronic schizophrenia patients when compared to the healthy controls. Schizophrenia risk was 4-7% higher among those with elevated Antigliadin IgG and IgA antibody levels. In addition, smoking cigarettes has been shown to increase the risk of developing schizophrenia. Patients with chronic schizophrenia showed elevated levels of anti-Saccharomyces cerevisiae antibody and soluble CD14, indicating bacterial translocation and immune activation. To understand the mechanisms behind chronic Schizophrenia, which link inflammation, immune responses, and the gut-brain axis, further robust larger studies are necessary. The results of this study can be used by healthcare professionals to understand the relationship between intestinal permeability, inflammation, and food hypersensitivity.
Abstract
Schizophrenia is a heterogeneous disorder without a fully elucidated etiology and mechanisms. One likely explanation for the development of schizophrenia is low-grade inflammation, possibly caused by processes in the gastrointestinal tract related to gluten sensitivity. The aims of this study were to: (1) compare levels of markers of gluten sensitivity, inflammation and gut permeability, and (2) determine associations between gluten sensitivity, inflammation, and intestinal permeability in patients with first-episode/chronic (FS/CS) schizophrenia and healthy individuals (HC). The total sample comprised 162 individuals (52 FS; 50 CS, and 60 HC). The examination included clinical variables, nutritional assessment, and serum concentrations of: high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), soluble CD14 (sCD14), anti-Saccharomyces cerevisiae antibody (ASCA), antigliadin antibodies (AGA) IgA/IgG, antibodies against tissue transglutaminase 2 (anti-tTG) IgA, anti-deamidated gliadin peptides (anti-DGP) IgG. A significant difference between groups was found in sCD14, ASCA, hs-CRP, IL-6 and AGA IgA levels. AGA IgG/IgA levels were higher in the FS (11.54%; 30.77%) and CS (26%; 20%) groups compared to HC. The association between intestinal permeability and inflammation in the schizophrenic patients only was noted. The risk for developing schizophrenia was odds ratio (OR) = 4.35 (95% confidence interval (CI 1.23-15.39) for AGA IgA and 3.08 (95% CI 1.19-7.99) for positive AGA IgG. Inflammation and food hypersensitivity reactions initiated by increased intestinal permeability may contribute to the pathophysiology of schizophrenia. The immune response to gluten in FS differs from that found in CS.
-
3.
Gut hormones in microbiota-gut-brain cross-talk.
Sun, LJ, Li, JN, Nie, YZ
Chinese medical journal. 2020;133(7):826-833
-
-
-
Free full text
-
Plain language summary
The bidirectional communication between the gastrointestinal tract and the brain, termed the gut-brain axis (GBA), is evidenced to to play a role in physiological and psychological health. While precise communication pathways are not yet clear, it is hypothesised this pathway may be an important therapeutic target in complex psychiatric and gastrointestinal disorders. The aim of this review is to summarize the role of gut hormones in the GBA and focus on how the microbiota interact with these hormones in health and disease. The literature shows the gut microbiota can affect the metabolism of various gut hormones, and these hormones can influence the microbiota. Evidence suggests this cross-talk may be a key regulator in appetite, immune response, stress response, and metabolism. Based on this review, the authors conclude the gut microbiota-hormone homeostatic relationship provides insight on the complex communication between the gut and the brain. They suggest future research should target the microbiota-hormones-gut-brain axis to develop new therapeutic strategies to psychiatric disorders.
Abstract
The homeostasis of the gut-brain axis has been shown to exert several effects on physiological and psychological health. The gut hormones released by enteroendocrine cells scattered throughout the gastrointestinal tract are important signaling molecules within the gut-brain axis. The interaction between gut microbiota and gut hormones has been greatly appreciated in gut-brain cross-talk. The microbiota plays an essential role in modulating many gut-brain axis-related diseases, ranging from gastrointestinal disorders to psychiatric diseases. Similarly, gut hormones also play pleiotropic and important roles in maintaining health, and are key signals involved in gut-brain axis. More importantly, gut microbiota can affect the release and functions of gut hormones. This review highlights the role of gut microbiota in the gut-brain axis and focuses on how microbiota-related gut hormones modulate various physiological functions. Future studies could target the microbiota-hormones-gut brain axis to develop novel therapeutics for different psychiatric and gastrointestinal disorders, such as obesity, anxiety, and depression.
-
4.
Microbiome-Gut-Brain Axis and Toll-Like Receptors in Parkinson's Disease.
Caputi, V, Giron, MC
International journal of molecular sciences. 2018;19(6)
-
-
-
Free full text
Plain language summary
Parkinson’s disease (PD) is a progressively debilitating neurodegenerative disease and recently the role of the microbiota-gut-brain axis has gained attention in patients with PD. Research shows that an altered gut microbiota can activate Toll-like receptors (TLRs), receptors involved in the innate immune response, causing an inflammatory cascade in the gut and brain. Based on this knowledge, gut microbiota and TLRs may be potential therapeutic targets for PD. This review sheds light on the current knowledge regarding the association between the microbiota-gut-brain axis and innate immunity via TLR signalling in PD. Increased understanding of this relationship should lead to insights on the pathophysiology of PD, as well as improved dietary and pharmaceutical therapeutic approaches in PD patients. Based on the existing evidence, the authors conclude that through modulating the gut, thus balancing the immune response in PD patients, it may be possible to influence early phases of the neurodegenerative cascade.
Abstract
Parkinson’s disease (PD) is a progressively debilitating neurodegenerative disease characterized by α-synucleinopathy, which involves all districts of the brain-gut axis, including the central, autonomic and enteric nervous systems. The highly bidirectional communication between the brain and the gut is markedly influenced by the microbiome through integrated immunological, neuroendocrine and neurological processes. The gut microbiota and its relevant metabolites interact with the host via a series of biochemical and functional inputs, thereby affecting host homeostasis and health. Indeed, a dysregulated microbiota-gut-brain axis in PD might lie at the basis of gastrointestinal dysfunctions which predominantly emerge many years prior to the diagnosis, corroborating the theory that the pathological process is spread from the gut to the brain. Toll-like receptors (TLRs) play a crucial role in innate immunity by recognizing conserved motifs primarily found in microorganisms and a dysregulation in their signaling may be implicated in α-synucleinopathy, such as PD. An overstimulation of the innate immune system due to gut dysbiosis and/or small intestinal bacterial overgrowth, together with higher intestinal barrier permeability, may provoke local and systemic inflammation as well as enteric neuroglial activation, ultimately triggering the development of alpha-synuclein pathology. In this review, we provide the current knowledge regarding the relationship between the microbiota-gut⁻brain axis and TLRs in PD. A better understanding of the dialogue sustained by the microbiota-gut-brain axis and innate immunity via TLR signaling should bring interesting insights in the pathophysiology of PD and provide novel dietary and/or therapeutic measures aimed at shaping the gut microbiota composition, improving the intestinal epithelial barrier function and balancing the innate immune response in PD patients, in order to influence the early phases of the following neurodegenerative cascade.
-
5.
Harnessing the Power of Microbiome Assessment Tools as Part of Neuroprotective Nutrition and Lifestyle Medicine Interventions.
Toribio-Mateas, M
Microorganisms. 2018;6(2)
-
-
-
Free full text
Plain language summary
This is a practical review written by a clinician for other clinicians. It draws from an extensive body of evidence on the links between the gut microbes (bacteria amongst them), called the microbiota, both in health and in a variety of human diseases. The author, who is also a researcher in the communication between the gut and the brain (the gut-brain axis), focuses on the translation of science into simple clinical applications that result in measurable health outcomes, and in particular in neurodegenerative conditions such as Alzheimer's and Parkinson's, but also other less well studied such as Chronic Fatigue Syndrome (CFS). The paper also covers mental health / mood conditions such as anxiety, and depression. Practitioners who work in the area of gut health and use stool tests to assess various imbalances their patients may be experiencing will get the most out this paper. The author takes a look at the physiological processes that influence gastrointestinal as well as brain health and discusses how tools such as the characterisation or "mapping" of commensal bacteria (the bacteria that lives inside our guts normally), along with the identification of potential opportunistic and pathogenic bacteria and parasites, together with knowledge of molecules such as short chain fatty acids or zonulin can enable better clinical decision making by nutrition and lifestyle medicine practitioners. The paper also includes a valuable discussion on patient-reported outcome measures (PROMs), and particularly on the use of MYMOP by practitioners as a validated tool to collect insight from exposure to real world data in clinical practice.
Abstract
An extensive body of evidence documents the importance of the gut microbiome both in health and in a variety of human diseases. Cell and animal studies describing this relationship abound, whilst clinical studies exploring the associations between changes in gut microbiota and the corresponding metabolites with neurodegeneration in the human brain have only begun to emerge more recently. Further, the findings of such studies are often difficult to translate into simple clinical applications that result in measurable health outcomes. The purpose of this paper is to appraise the literature on a select set of faecal biomarkers from a clinician’s perspective. This practical review aims to examine key physiological processes that influence both gastrointestinal, as well as brain health, and to discuss how tools such as the characterisation of commensal bacteria, the identification of potential opportunistic, pathogenic and parasitic organisms and the quantification of gut microbiome biomarkers and metabolites can help inform clinical decisions of nutrition and lifestyle medicine practitioners.
-
6.
Bacillus coagulans MTCC 5856 for the management of major depression with irritable bowel syndrome: a randomised, double-blind, placebo controlled, multi-centre, pilot clinical study.
Majeed, M, Nagabhushanam, K, Arumugam, S, Majeed, S, Ali, F
Food & nutrition research. 2018;62
-
-
-
Free full text
Plain language summary
Bacillus coagulans, also known as Lactobacillus sporogenes, is a probiotic bacterium in spore form that "opens up" in the small intestine, thereby enduring minimal damage by the acidity of the stomach pH. Bacillus coagulans MTCC 5856 supplemented orally in doses of 2 billion spores twice per day (a total of 4 billion per day) has been shown previously to help in the management of diarrhoea. The current study is randomised and controlled, and focused on finding out what effect this probiotic would have on the depressive symptoms often experienced by people with irritable bowel syndrome or IBS. A total of 40 participants were randomised to the probiotic group, which means that 20 of them just took an empty capsule without any Bacillus coagulans to figure out whether the effects of the supplementation were just due to chance or placebo. Neither the clinician administering the probiotic or the participants knew whether they were taking the probiotic or an empty capsule. The study lasted for 90 days. Those who did take the probiotic at 4 billion spores per day (2 billion morning and 2 billion evening) experienced an improvement in both depression and IBS symptoms that was statistically significant and clinically meaningful. Even though this was a small study, it is worth taking into account that the safety of supplementation with Bacillus coagulans has been documented in previous studies. Therefore, nutrition and lifestyle practitioners looking to support their patients' mental health by working upstream from the gut may wish to consider adding this probiotic bacterium to their recommendations on the basis of its potential psychobiotic properties.
Abstract
BACKGROUND The modification of microbial ecology in human gut by supplementing probiotics may be an alternative strategy to ameliorate or prevent depression. OBJECTIVE The current study was conducted to assess the safety and efficacy of the probiotic strain Bacillus coagulans MTCC 5856 for major depressive disorder (MDD) in IBS patients. METHOD Patients (n = 40) diagnosed for MDD with IBS were randomized (1:1) to receive placebo or B. coagulans MTCC 5856 at a daily dose of 2 × 109 cfu (2 billion spores) and were maintained to the end of double-blind treatment (90 days). Changes from baseline in clinical symptoms of MDD and IBS were evaluated through questionnaires. RESULTS Significant change (p = 0.01) in favour of the B. coagulans MTCC 5856 was observed for the primary efficacy measure Hamilton Rating Scale for Depression (HAM-D), Montgomery-Asberg Depression Rating Scale (MADRS), Center for Epidemiological Studies Depression Scale (CES-D) and Irritable bowel syndrome quality of life questionnaire (IBS-QOL). Secondary efficacy measures i.e. Clinical Global Impression-Improvement rating Scale (CGI-I), Clinical Global Impression Severity rating Scale (CGI-S), Gastrointestinal Discomfort Questionnaire (GI-DQ) and Modified Epworth Sleepiness Scale (mESS) also showed significant results (p = 0.01) in B. coagulans MTCC 5856 group compared to placebo group except dementia total reaction scoring. Serum myeloperoxidase, an inflammatory biomarker was also significantly reduced (p < 0.01) when compared with the baseline and end of the study. All the safety parameters remained well within the normal clinical range and had no clinically significant difference between the screening and at the end of the study. CONCLUSION B. coagulans MTCC 5856 showed robust efficacy for the treatment of patients experiencing IBS symptoms with major depressive disorder. The improvement in depression and IBS symptoms was statistically significant and clinically meaningful. These findings support B. coagulans MTCC 5856 as an important new treatment option for major depressive disorder in IBS patients.
-
7.
Gut microbiota varies by opioid use, circulating leptin and oxytocin in African American men with diabetes and high burden of chronic disease.
Barengolts, E, Green, SJ, Eisenberg, Y, Akbar, A, Reddivari, B, Layden, BT, Dugas, L, Chlipala, G
PloS one. 2018;13(3):e0194171
-
-
-
Free full text
Plain language summary
Obesity and type 2 diabetes (T2D) can lead to alterations of the composition of the gut microbiota. The gut microbiota, in turn, has been suggested to play a role in the development of psychological conditions, such as anxiety, depression and drug addiction. This cross-sectional study included 99 mostly overweight/obese African American men, with or without T2D, and with or without opioid addiction and other psychiatric disorders. The aim of the study was to determine, whether the gut microbiota composition was linked to T2D and the use of opioids in these patients. Furthermore, the researchers looked at the associations between leptin and oxytocin levels in the blood and the gut microbiota, and whether these hormone biomarkers could be indicative of obesity and psychosocial behaviour, such as opioid addiction. The authors found that some bacterial species in the gut were affected by T2D, diabetes medication and opioid use in the studied subjects. A relationship was also observed between leptin and oxytocin levels and the abundance of certain bacteria in the gut in subjects without T2D. The authors conclude that targeting the gut microbiota could be used for the management of T2D and associated psychiatric disorders. However, more studies are needed to provide further understanding of the connections between the gut microbiota and the brain.
Abstract
OBJECTIVE The gut microbiota is known to be related to type 2 diabetes (T2D), psychiatric conditions, and opioid use. In this study, we tested the hypothesis that variability in gut microbiota in T2D is associated with psycho-metabolic health. METHODS A cross-sectional study was conducted among African American men (AAM) (n = 99) that were outpatients at a Chicago VA Medical Center. The main outcome measures included fecal microbiota ecology (by 16S rRNA gene sequencing), psychiatric disorders including opioid use, and circulating leptin and oxytocin as representative hormone biomarkers for obesity and psychological pro-social behavior. RESULTS The study subjects had prevalent overweight/obesity (78%), T2D (50%) and co-morbid psychiatric (65%) and opioid use (45%) disorders. In the analysis of microbiota, the data showed interactions of opioids, T2D and metformin with Bifidobacterium and Prevotella genera. The differential analysis of Bifidobacterium stratified by opioids, T2D and metformin, showed significant interactions among these factors indicating that the effect of one factor was changed by the other (FDR-adjusted p [q] < 0.01). In addition, the pair-wise comparison showed that participants with T2D not taking metformin had a significant 6.74 log2 fold increase in Bifidobacterium in opioid users as compared to non-users (q = 2.2 x 10-8). Since metformin was not included in this pair-wise comparison, the significant 'q' suggested association of opioid use with Bifidobacterium abundance. The differences in Bifidobacterium abundance could possibly be explained by opioids acting as organic cation transporter 1 (OCT1) inhibitors. Analysis stratified by lower and higher leptin and oxytocin (divided by the 50th percentile) in the subgroup without T2D showed lower Dialister in High-Leptin vs. Low-Leptin (p = 0.03). Contrary, the opposite was shown for oxytocin, higher Dialister in High-Oxytocin vs. Low-Oxytocin (p = 0.04). CONCLUSIONS The study demonstrated for the first time that Bifidobacterium and Prevotella abundance was affected by interactions of T2D, metformin and opioid use. Also, in subjects without T2D Dialister abundance varied according to circulating leptin and oxytocin.
-
8.
Gut Microbiota-Based Therapies for Irritable Bowel Syndrome.
Stern, EK, Brenner, DM
Clinical and translational gastroenterology. 2018;9(2):e134
-
-
-
Free full text
-
Plain language summary
Irritable bowel syndrome (IBS) is a common, complex disorder characterised by pain associated with changes in bowel habits. The gut micriobiome describes the collective bacteria that inhabit the gastrointestinal (GI) tract, and it is hypothesised that alterations in gut microbiota play a role in the development of IBS. This aim of this review is to provide an overview of the role of altered GI homeostasis in IBS and assess the available therapeutic options. The current literature suggests that gut microbiota contributes to IBS development through GI inflammation, gut permeability, intestinal motility, gut-brain communication and gas production. Many treatment options exist but have differing efficacy depending on IBS subtype. Based on this review, the authors suggest further research is warranted to better understand the mechanisms and benefits of IBS treatment options.
Abstract
Irritable bowel syndrome (IBS) is a common, heterogeneous disorder characterized by abdominal pain associated with changes in bowel habits. The pathogenesis of IBS is multifactorial and may relate to alterations in the gut microbiota, changes in visceral sensation and motility, and genetic and environmental factors. Administration of systemic antibiotics may increase the risk of IBS by altering gastrointestinal homeostasis. Therapeutic interventions for IBS with diarrhea that are thought to target alterations in the gut microbiota include the nonsystemic antibiotic rifaximin, the medical food serum-derived bovine immunoglobulin, prebiotics, probiotics, and dietary modification. SYN-010 is a modified-release statin formulation that reduces methane production by Methanobrevibacter smithii and is currently in development for the treatment of patients with constipation-predominant IBS. Use of these interventions in the management of patients with IBS may function to restore a healthy gut microbiota and ameliorate symptoms of IBS.
-
9.
The Gut-Brain Axis and the Microbiome: Clues to Pathophysiology and Opportunities for Novel Management Strategies in Irritable Bowel Syndrome (IBS).
Quigley, EMM
Journal of clinical medicine. 2018;7(1)
-
-
-
Free full text
Plain language summary
Irritable bowel syndrome (IBS) is a common functional gut disorder that is seen to have a number of causes. Given the widespread interest in the gut microbiome in health and disease, the role of microbiota has now been explored in the gut-brain axis paradigm. This review explores the novel addition of microbiota to the gut-brain axis and its implications to the assessment and management of IBS. Current literature suggests that a disturbed microbiome or an aberrant immune response to the disturbed microbiome may impact the central nervous system. These findings have confirmed the microbiota is useful in understanding the development of symptoms in IBS. Based on the existing literature, the author concludes there is new insight for diagnostic and therapeutic approaches to IBS.
Abstract
Irritable bowel syndrome (IBS) is one of the most common of all medical disorders worldwide and, while for some it represents no more than a nuisance, for others it imposes significant negative impacts on daily life and activities. IBS is a heterogeneous disorder and may well have a number of causes which may lie anywhere from the external environment to the contents of the gut lumen and from the enteric neuromuscular apparatus and the gut immune system to the central nervous system. Consequently, the paradigm of the gut-brain axis, which includes the participation of these various factors, has proven a useful model to assist clinicians and patients alike in understanding the genesis of symptoms in IBS. Now, given the widespread interest in the gut microbiome in health and disease, in general, reports of disordered enteric bacterial communities in IBS, and experimental data to indicate that components of the gut microbiota can influence brain morphology and function, as well as behavior and cognition, this concept has been extended to encompass the microbiota-gut-brain axis. The implications of this novel concept to the assessment and management of IBS will be explored in this review.
-
10.
Intestinal microbiome-gut-brain axis and irritable bowel syndrome.
Moser, G, Fournier, C, Peter, J
Wiener medizinische Wochenschrift (1946). 2018;168(3-4):62-66
-
-
-
Free full text
-
Plain language summary
The gut-brain-microbiota axis connects the nervous system with the metabolic, hormonal and immune functions of the intestines. Irritable bowel syndrome (IBS) is a functional gut disorder that commonly presents with psychological co-morbidities, and while animal studies show strong associations between stress and gut microbiota, studies in humans are rare. This review assesses the current literature on intestinal microbiome and its association with stress, anxiety and depression in patients with IBS. Based on existing studies, the authors found the gut microbiota forms a crucial link between the intestine and nervous system. Therapies targeted at both modulating the gut microbiome and psychological interventions are recommended. The authors conclude further randomised clinical trials are needed to better understand which therapies work best for patients with IBS.
Abstract
Psychological comorbidity is highly present in irritable bowel syndrome (IBS). Recent research points to a role of intestinal microbiota in visceral hypersensitivity, anxiety, and depression. Increased disease reactivity to psychological stress has been described too. A few clinical studies have attempted to identify features of dysbiosis in IBS. While animal studies revealed strong associations between stress and gut microbiota, studies in humans are rare. This review covers the most important studies on intestinal microbial correlates of psychological and clinical features in IBS, including stress, anxiety, and depression.