-
1.
Lactobacillus rhamnosus CNCM I-3690 decreases subjective academic stress in healthy adults: a randomized placebo-controlled trial.
Wauters, L, Van Oudenhove, L, Accarie, A, Geboers, K, Geysen, H, Toth, J, Luypaerts, A, Verbeke, K, Smokvina, T, Raes, J, et al
Gut microbes. 2022;14(1):2031695
-
-
-
Free full text
-
Plain language summary
Previous research has shown a bidirectional relationship between the gut and psychological stress, which could be mediated by intestinal permeability followed by an immune and inflammatory response. However, the exact mechanisms of this relationship are yet to be elucidated. This randomised, double-blind, placebo-controlled trial evaluated the beneficial effects of Lactobacillus rhamnosus CNCM I-3690 on intestinal permeability and stress markers during a public speech in healthy students. Participants consumed either milk containing Lactobacillus rhamnosus CNCM I-3690 or acidified milk twice daily for four weeks to assess subjective and objective stress markers and markers of intestinal permeability. Lactobacillus rhamnosus CNCM I-3690 reduced the stress-induced hyperpermeability to mannitol and subjective stress markers (State-Trait Anxiety Inventory/ STAI). A subgroup of healthy students with stress-induced cortisol >P90 of baseline showed a reduction in perceived stress score following Lactobacillus rhamnosus CNCM I-3690 intervention. To evaluate the additional effects of Lactobacillus rhamnosus CNCM I-3690 on stress and gut health, further robust studies are needed. Healthcare professionals can use the findings of this study to understand the anxiolytic effects of Lactobacillus rhamnosus CNCM I-3690.
Abstract
Psychological stress negatively affects the intestinal barrier function in animals and humans. We aimed to study the effect of Lactobacillus rhamnosus CNCM I-3690 on intestinal permeability and stress-markers during public speech. Healthy students were randomized to L. rhamnosus-containing (test) or acidified (placebo) milk consumed twice daily for 4 weeks, with 46 subjects per treatment group. Small intestinal permeability was quantified by a 2 h urinary lactulose-mannitol ratio (LMR, primary outcome), fractional excretion of lactulose (FEL) and mannitol (FEM). Salivary cortisol, State-Trait Anxiety Inventory (STAI) and Perceived Stress scores (PSS) were collected. No between-treatment differences were found for LMR (p = .71), FEL or FEM. Within-treatment analyses showed similar LMR and FEL but a stress-induced increase of FEM with the placebo (p < .05) but not test product. Despite a similar increase in salivary cortisol, the stress-induced increase in STAI was significantly lower with the test product vs. placebo (p = .01). Moreover, a stress-preventative effect of the probiotic was found for PSS and more pronounced in subjects with high stress-induced cortisol (p = .01). While increased FEM was mediated by salivary cortisol levels, the effect of the test product on subjective stress was not mediated by changes in FEM. No serious adverse events occurred. In conclusion, we demonstrated that L. rhamnosus CNCM I-3690 prevented stress-induced hyperpermeability to mannitol. Subjective but not objective stress-markers were reduced with L. rhamnosus vs. placebo, suggesting anxiolytic effects, which were independent of barrier stabilization and attractive for the reduction of stress in both health and disease. Clinicaltrials.gov, number NCT03408691.
-
2.
A Low-FODMAP Diet Provides Benefits for Functional Gastrointestinal Symptoms but Not for Improving Stool Consistency and Mucosal Inflammation in IBD: A Systematic Review and Meta-Analysis.
Peng, Z, Yi, J, Liu, X
Nutrients. 2022;14(10)
-
-
-
Free full text
Plain language summary
The low-FODMAP diet eliminates carbohydrates that cannot be easily digested in order to reduce functional gastrointestinal symptoms associated with irritable bowel disease (IBD). The symptoms of irritable bowel disease include abdominal pain and bloating. This systematic review and meta-analysis aimed to evaluate whether a low-FODMAP diet can alleviate functional gastrointestinal symptoms in individuals with inflammatory bowel disease. In comparison with a regular diet, a low-FODMAP diet significantly reduced symptoms of bloating, wind, flatulence, abdominal pain, fatigue, and lethargy in patients with IBD. In addition, patients with Crohn's disease have achieved remission or reduced symptoms after following a low-FODMAP diet. Healthcare professionals can use this study to understand better the effects of a low-FODMAP diet on patients with IBD who have functional gastrointestinal symptoms. Further robust studies are, however, required to evaluate the evidence's robustness and identify the mechanism behind the improvement of symptoms.
Abstract
BACKGROUND A low fermentable oligosaccharides, disaccharides, monosaccharides, and polyols diet (LFD) is claimed to improve functional gastrointestinal symptoms (FGSs). However, the role of LFD in inflammatory bowel disease (IBD) patients with FGSs remains unclear. OBJECTIVE To systematically assess the efficacy of LFD in IBD patients with FGSs. METHODS Six databases were searched from inception to 1 January 2022. Data were synthesized as the relative risk of symptoms improvement and normal stool consistency, mean difference of Bristol Stool Form Scale (BSFS), Short IBD Questionnaire (SIBDQ), IBS Quality of Life (IBS-QoL), Harvey-Bradshaw index (HBi), Mayo score, and fecal calprotectin (FC). Risk of bias was assessed based on study types. A funnel plot and Egger's test were used to analyze publication bias. RESULTS This review screened and included nine eligible studies, including four randomized controlled trials (RCTs) and five before-after studies, involving a total of 446 participants (351 patients with LFD vs. 95 controls). LFD alleviated overall FGSs (RR: 0.47, 95% CI: 0.33-0.66, p = 0.0000) and obtained higher SIBDQ scores (MD = 11.24, 95% CI 6.61 to 15.87, p = 0.0000) and lower HBi score of Crohn's disease (MD = -1.09, 95% CI -1.77 to -0.42, p = 0.002). However, there were no statistically significant differences in normal stool consistency, BSFS, IBS-QoL, Mayo score of ulcerative colitis, and FC. No publication bias was found. CONCLUSIONS LFD provides a benefit in FGSs and QoL but not for improving stool consistency and mucosal inflammation in IBD patients. Further well-designed RCTs are needed to develop the optimal LFD strategy for IBD.
-
3.
Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders.
Chen, Y, Xu, J, Chen, Y
Nutrients. 2021;13(6)
-
-
-
Free full text
Plain language summary
Imbalances in the gut microbiota occur in various neurological disorders including Alzheimer’s disease (AD), Parkinson’s disease (PD), autism spectrum disorder and depression. Imbalances in key neurotransmitters are associated with the same disorders. This review focuses on the regulatory mechanisms of the intestinal microbiome and its metabolites on cognitive functions and the pathogeneses of these neurodegenerative diseases. The gut microbiota produce neurotransmitters such as glutamate, GABA, serotonin and dopamine or their precursors. These neurotransmitters are not able to cross the blood brain barrier but the precursors are, therefore the gut microbiota is indirectly involved in the regulation of the production of these key neurotransmitters and therefore neuronal activity and cognitive functions of the brain. The findings demonstrate an association between a healthy gut microbiome structure and balanced neurotransmitter levels in the host. Microbial therapy holds huge promise for the treatment of brain disorders. The development of drugs for neurological disorders must also consider effects on the physiology of the gut microbiome.
Abstract
Emerging evidence indicates that gut microbiota is important in the regulation of brain activity and cognitive functions. Microbes mediate communication among the metabolic, peripheral immune, and central nervous systems via the microbiota-gut-brain axis. However, it is not well understood how the gut microbiome and neurons in the brain mutually interact or how these interactions affect normal brain functioning and cognition. We summarize the mechanisms whereby the gut microbiota regulate the production, transportation, and functioning of neurotransmitters. We also discuss how microbiome dysbiosis affects cognitive function, especially in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
-
4.
Differential Health Effects on Inflammatory, Immunological and Stress Parameters in Professional Soccer Players and Sedentary Individuals after Consuming a Synbiotic. A Triple-Blinded, Randomized, Placebo-Controlled Pilot Study.
Quero, CD, Manonelles, P, Fernández, M, Abellán-Aynés, O, López-Plaza, D, Andreu-Caravaca, L, Hinchado, MD, Gálvez, I, Ortega, E
Nutrients. 2021;13(4)
-
-
-
Free full text
Plain language summary
Synbiotic, a mixture of prebiotics and probiotics, is known to improve neurotransmitter interactions, immune, inflammatory, and stress responses by modulating the gut microbial composition. It is also believed that physical activity plays an important role in the modulation of immune function and stress response. The purpose of this triple-blinded, randomized, placebo-controlled pilot study was to evaluate the health benefits of symbiotic intervention in fourteen sedentary students and thirteen soccer players, especially in terms of improving immunophysiological and metabolic parameters. The 300mg of symbiotic intervention contained Bifidobacterium lactis CBP-001010, Lactobacillus rhamnosus CNCM I-4036, Bifidobacterium longum ES1(109 colony-forming unit), and fructooligosaccharides (200 mg) plus 1.5 mg of zinc, 8.25 µg of selenium, 0.75 µg of vitamin, and maltodextrin. Following a one-month intervention with synbiotic formulation, soccer players showed improvements in anxiety, sleep quality and stress, a slight reduction in proinflammatory cytokine IL-1β, an exercise-induced significant increase in dopamine and a slight elevation of corticotropin-releasing hormone. For confirmation of results of this pilot study and to assess more significant effects of symbiotic intervention in athletes as well as in the general population, longer-term robust studies are required. The findings of this study can help healthcare professionals understand the extensive health benefits of synbiotic intervention and its relationship to physical activity.
Abstract
The main objective of this research was to carry out an experimental study, triple-blind, on the possible immunophysiological effects of a nutritional supplement (synbiotic, Gasteel Plus®, Heel España S.A.U.), containing a mixture of probiotic strains, such as Bifidobacterium lactis CBP-001010, Lactobacillus rhamnosus CNCM I-4036, and Bifidobacterium longum ES1, as well as the prebiotic fructooligosaccharides, on both professional athletes and sedentary people. The effects on some inflammatory/immune (IL-1β, IL-10, and immunoglobulin A) and stress (epinephrine, norepinephrine, dopamine, serotonin, corticotropin-releasing hormone (CRH), Adrenocorticotropic hormone (ACTH), and cortisol) biomarkers were evaluated, determined by flow cytometer and ELISA. The effects on metabolic profile and physical activity, as well as on various parameters that could affect physical and mental health, were also evaluated via the use of accelerometry and validated questionnaires. The participants were professional soccer players in the Second Division B of the Spanish League and sedentary students of the same sex and age range. Both study groups were randomly divided into two groups: a control group-administered with placebo, and an experimental group-administered with the synbiotic. Each participant was evaluated at baseline, as well as after the intervention, which lasted one month. Only in the athlete group did the synbiotic intervention clearly improve objective physical activity and sleep quality, as well as perceived general health, stress, and anxiety levels. Furthermore, the synbiotic induced an immunophysiological bioregulatory effect, depending on the basal situation of each experimental group, particularly in the systemic levels of IL-1β (increased significantly only in the sedentary group), CRH (decreased significantly only in the sedentary group), and dopamine (increased significantly only in the athlete group). There were no significant differences between groups in the levels of immunoglobulin A or in the metabolic profile as a result of the intervention. It is concluded that synbiotic nutritional supplements can improve anxiety, stress, and sleep quality, particularly in sportspeople, which appears to be linked to an improved immuno-neuroendocrine response in which IL-1β, CRH, and dopamine are clearly involved.
-
5.
Panic Attacks: Biology or Psychology?
Dr. Mark Hyman is a practicing family physician and an internationally recognised leader, speaker, educator, and advocate in the field of Functional Medicine. He is the founder and director of The UltraWellness Center, the Head of Strategy and Innovation of the Cleveland Clinic Center for Functional Medicine, a thirteen-time New York Times bestselling author, and Board President for Clinical Affairs for The Institute for Functional Medicine.
2021
Abstract
In this episode, Dr Hyman and Dr George Papaicolaou discuss the Functional Medicine approach to treating panic attacks. They explore the range of physiological considerations encountered when treating patients who are experiencing panic attacks, as well as how adverse childhood experiences (ACEs) and trauma can be treated to reduce anxiety and eliminate panic attacks.
-
6.
The Brain Gut Microbiome Axis (BGM) w/ Dr. Emeran Mayer | MGC. Ep. 32
Dr. Emeran Mayer is the author of the recently released book The Gut-Immune Connection as well as The Mind-Gut Connection. He has studied brain-body interactions for the last forty years and is the executive director of the G. Oppenheimer Center for Neurobiology of Stress and Resilience, and the founding director of the UCLA Brain Gut Microbiome Center at the University of California at Los Angeles.
2021
Abstract
In this episode of the Mind Gut Conversation, Dr Mayer discusses IBS pathophysiology with Jana Hoffman from Mahana Therapeutics. They dive into the topic of the Brain-Gut-Microbiome axis, discussing how each emotional state can trigger a unique plethora of physical symptoms e.g. Depression is associated with specific patterns, such as slow transit, lower bowel peristalsis activity, poor digestion and constipation, while anxiety seems to be causing the opposite kind of physical symptoms. They also discuss how Covid-19 is having a strong psychological impact on people and therefore on their gastrointestinal system.
-
7.
How our microbiome might affect our mental health
The World Economic Forum is the International Organization for Public-Private Cooperation. The Forum engages the foremost political, business, cultural and other leaders of society to shape global, regional and industry agendas. It was established in 1971 as a not-for-profit foundation and is headquartered in Geneva, Switzerland. It is independent, impartial and not tied to any special interests. The Forum strives in all its efforts to demonstrate entrepreneurship in the global public interest while upholding the highest standards of governance. Moral and intellectual integrity is at the heart of everything it does.
2021
Abstract
This article reviews several studies that analyse the significant stressors brought about and exacerbated by COVID-19, which are associated with startling surges in mental health illnesses, specifically depressive disorders. It further explains how, according to the latest research, the answer to the understanding of depression may lie within the microbiome, given its impact on our brain and emotions. Addressing modification through diet, probiotics, and lifestyle changes, may result in beneficial support for the pathophysiology of depression.
-
8.
Patti & Michael Discuss The Gut-Brain Axis (Rebroadcast)
Genova Diagnostics' podcast, The Lab Report, is focused on functional & integrative medicine, specialty laboratory diagnostics, and natural therapeutics. Join hosts Michael Chapman, ND,Patti Devers, DO, and assorted guests, as they bring their own unique style to the health & wellness discussion. It is aimed at providing the same type of educational content that Genova is well-known for, but to the larger audience of functional & integrative practitioners of all experience levels.
2021
Abstract
In this episode, Patti and Michael discuss some of the mechanisms by which this axis sends and receives those signals. They also talk about the importance of addressing both when optimizing health. The commensal bacteria in our gut and their metabolites can directly affect our memory and mood, while our brain can alter bacterial patterns and GI function. They also chat about the communication mechanisms from the GI tract to the brain, how the brain affects the gut and how to support treatment - also using Genova diagnostics functional tests. To conclude, they talk about the latest research in regards to psychobiotics and their role in influencing neurotransmitter production and, consequently, our mood.
-
9.
Evolution of the Human Diet and Its Impact on Gut Microbiota, Immune Responses, and Brain Health.
González Olmo, BM, Butler, MJ, Barrientos, RM
Nutrients. 2021;13(1)
-
-
-
Free full text
Plain language summary
One explanation for the increased prevalence in chronic disease and mental illness is from the evolutionary perspective. This suggests the rapid shift in diet towards processed foods in the past 200 years has not allowed for sufficient adaptation of the gut microbiome. The gut microbiome plays an important role in the digestive, immune and nervous systems via the gut-brain axis, and may be a key factor in modulating inflammation and disease. The aim of this review is to discuss how what we eat affects the immune system and impacts our brain health. The literature currently shows significant associations between the Western diet and its impact on the health of the gut microbiome and the brain. Increased intake of saturated fats, refined carbohydrates and sugar, coupled with a reduction in fiber, negatively impacts the digestive system and elicits an immune response. This response can lead to neuroinflammation, which is now found to be associated with deficits in learning and memory, as well as increased rates of neurodegenerative disease and depression. Based on the existing literature, the authors conclude the human gut microbiome has not had sufficient time to adapt to many modern foods, thus leading to inflammation and disease. The authors recommend that a diet composed of natural whole foods with minimal processing can help prevent and alleviate some of the burden caused by chronic disease, and suggest future studies focus on improving techniques to evaluate neuroinflammation in humans.
Abstract
The relatively rapid shift from consuming preagricultural wild foods for thousands of years, to consuming postindustrial semi-processed and ultra-processed foods endemic of the Western world less than 200 years ago did not allow for evolutionary adaptation of the commensal microbial species that inhabit the human gastrointestinal (GI) tract, and this has significantly impacted gut health. The human gut microbiota, the diverse and dynamic population of microbes, has been demonstrated to have extensive and important interactions with the digestive, immune, and nervous systems. Western diet-induced dysbiosis of the gut microbiota has been shown to negatively impact human digestive physiology, to have pathogenic effects on the immune system, and, in turn, cause exaggerated neuroinflammation. Given the tremendous amount of evidence linking neuroinflammation with neural dysfunction, it is no surprise that the Western diet has been implicated in the development of many diseases and disorders of the brain, including memory impairments, neurodegenerative disorders, and depression. In this review, we discuss each of these concepts to understand how what we eat can lead to cognitive and psychiatric diseases.
-
10.
Exploring the Role and Potential of Probiotics in the Field of Mental Health: Major Depressive Disorder.
Johnson, D, Thurairajasingam, S, Letchumanan, V, Chan, KG, Lee, LH
Nutrients. 2021;13(5)
-
-
-
Free full text
Plain language summary
A bi-directional communication between the brain and the microbiome of the gut may exist, known as the microbiome-gut-brain axis (MGBA). The role of this and the use of probiotics in relation to many psychiatric and neurological disorders is being increasingly researched. This review aimed to summarise the research on the use of probiotics for the treatment of mental health disorders and major depressive disorder (MDD). Probiotics and their use were summarised concluding that they have a diverse range of health benefits due to their anti-inflammatory, antipathogenic and antimicrobial actions. Imbalances in the four major phyla of gut bacteria; Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria may have a major role in the development of MDD. Probiotics may have several mechanisms through which they benefit MDD and decreased inflammation in the brain, increased production of chemicals involved in brain signalling and decreased stress hormones, were all implicated. It was concluded that probiotics have mental health benefits, however gaps in the evidence from studies needs to be addressed. This study could be used by healthcare professionals to understand the role of probiotics in the treatment of mental health disorders and in particular MDD.
Abstract
The field of probiotic has been exponentially expanding over the recent decades with a more therapeutic-centered research. Probiotics mediated microbiota modulation within the microbiota-gut-brain axis (MGBA) have been proven to be beneficial in various health domains through pre-clinical and clinical studies. In the context of mental health, although probiotic research is still in its infancy stage, the promising role and potential of probiotics in various mental disorders demonstrated via in-vivo and in-vitro studies have laid a strong foundation for translating preclinical models to humans. The exploration of the therapeutic role and potential of probiotics in major depressive disorder (MDD) is an extremely noteworthy field of research. The possible etio-pathological mechanisms of depression involving inflammation, neurotransmitters, the hypothalamic-pituitary-adrenal (HPA) axis and epigenetic mechanisms potentially benefit from probiotic intervention. Probiotics, both as an adjunct to antidepressants or a stand-alone intervention, have a beneficial role and potential in mitigating anti-depressive effects, and confers some advantages compared to conventional treatments of depression using anti-depressants.