1.
Effect of probiotics or prebiotics on thyroid function: A meta-analysis of eight randomized controlled trials.
Shu, Q, Kang, C, Li, J, Hou, Z, Xiong, M, Wang, X, Peng, H
PloS one. 2024;19(1):e0296733
-
-
-
Free full text
Plain language summary
The gut microbiome is thought to play a role in thyroid disorders, mediated by regulating iodine uptake, degradation and enterohepatic cycling of thyroid hormones, and differences in microbiome composition between patients with thyroid disorders and healthy individuals have been observed. The aim of this systematic review and meta-analysis was to evaluate the effect of pro-, pre- and synbiotics on thyroid function (thyroid stimulating hormone (TSH), free thyroxine (fT4) and free triiodothyronine (fT3) and thyroid stimulating hormone receptor antibody (TRAb)) in patients with and without thyroid disorders. 8 randomised controlled trials including 367 participants were included in the review and meta-analysis. Neither pro-, pre- nor synbiotics had a significant effect on TSH, fT4 or fT3 but pre- and probiotics lead to a significant reduction in TRAb in patients with Graves’ disease.
Abstract
BACKGROUND Microbiome-directed therapies are increasingly utilized to optimize thyroid function in both healthy individuals and those with thyroid disorders. However, recent doubts have been raised regarding the efficacy of probiotics, prebiotics, and synbiotics in improving thyroid function. This systematic review aimed to investigate the potential relationship between probiotics/prebiotics and thyroid function by analyzing the impact on thyroid hormone levels. METHODS We conducted a comprehensive systematic review and meta-analysis of randomized controlled trials that investigated the effects of probiotics, prebiotics, and synbiotics on free triiodothyronine (fT3), free thyroxine (fT4), thyroid stimulating hormone (TSH), and thyroid stimulating hormone receptor antibody (TRAb) levels. We searched for articles from PubMed, Scopus, Web of Science, and Embase up until April 1st, 2023, without any language restriction. Quantitative data analysis was performed using a random-effects model, with standardized mean difference (SMD) and 95% confidence interval as summary statistics. The methods and results were reported according to the PRISMA2020 statement. RESULTS A total of eight articles were included in this review. The meta-analysis showed no significant alterations in TSH (SMD: -0.01, 95% CI: -0.21, 0.20, P = 0.93; I2: 0.00%), fT4 (SMD: 0.04, 95% CI: -0.29, 0.21, P = 0.73; I2: 0.00%) or fT3 (SMD: 0.45, 95% CI: -0.14, 1.03, P = 0.43; I2: 78.00%), while a significant reduction in TRAb levels was observed (SMD: -0.85, 95% CI: -1.54, -0.15, P = 0.02; I2: 18.00%) following probiotics/prebiotics supplementation. No indication of publication bias was found. CONCLUSIONS Probiotics/prebiotics supplementation does not influence thyroid hormone levels, but may modestly reduce TRAb levels in patients with Graves' disease.
2.
Do Dietary Supplements Affect Inflammation, Oxidative Stress, and Antioxidant Status in Adults with Hypothyroidism or Hashimoto's Disease?-A Systematic Review of Controlled Trials.
Kubiak, K, Szmidt, MK, Kaluza, J, Zylka, A, Sicinska, E
Antioxidants (Basel, Switzerland). 2023;12(10)
-
-
-
Free full text
Plain language summary
A deficiency of the thyroid hormone causes hypothyroidism (HT), whereas Autoimmune thyroiditis (AIT) is mainly an organ-specific autoimmune condition. Both HT and AIT are characterised by low-grade inflammation and inflammation in the thyroid gland. Dietary supplements may offer health benefits; however, previous research findings are inconclusive. This systematic review evaluated twenty-two controlled studies to understand the effectiveness of dietary supplements in reducing inflammation and oxidative stress and improving antioxidant and thyroid parameters in patients with HT or AIT. The efficacy of dietary supplements in improving thyroid health and reducing inflammation and oxidative stress was inconclusive due to the low quality of the included studies and the limited number of available studies. Selenium supplements might be beneficial in improving thyroid parameters and inflammation in patients with HT or AIT. Even though the therapeutic benefits of dietary supplements in treating thyroid disease were inconclusive, healthcare professionals can use them to address the common nutritional deficiencies in people with HT and AIT. Further, large, long-term, robust studies are required to assess the therapeutic utility of different dietary supplements in promoting the health of the thyroid gland.
Abstract
This systematic review aims to summarise the results of controlled trials on dietary supplements (DS) usage and inflammation, oxidative stress, antioxidant status, and thyroid parameter improvement in hypothyroidism (HT)/Hashimoto's thyroiditis (AIT) patients. The study protocol was registered with PROSPERO (no. CRD42022365149). A comprehensive search of the PubMed, Scopus, and Web of Science databases resulted in the identification of nineteen randomised controlled trials and three non-randomised studies for the review; three studies examined the effect of supplementation with vitamin D, twelve studies-with selenium, and seven studies-with other DS. Based on very limited evidence, the lack of influence of vitamin D supplementation on inflammatory parameters was found, while no studies have examined oxidative stress and antioxidant status parameters, and only one provided results for a single thyroid parameter after an intervention. Some evidence was found proving that selenium supplementation may decrease inflammation and improve thyroid parameters, but reaching a conclusion about its influence on oxidative stress and antioxidant status is not possible because of the insufficient number of studies. Additionally, due to examining other DS (e.g., multicomponent, Nigella sativa, and genistein) only in single studies, conclusions cannot be drawn. Further long-term, high-quality randomised controlled trials are necessary to better understand the influence of DS on inflammation, oxidative stress, and antioxidant status, as well as their potential to improve thyroid gland function in HT/AIT patients.
3.
Could the ketogenic diet induce a shift in thyroid function and support a metabolic advantage in healthy participants? A pilot randomized-controlled-crossover trial.
Iacovides, S, Maloney, SK, Bhana, S, Angamia, Z, Meiring, RM
PloS one. 2022;17(6):e0269440
-
-
-
Free full text
Plain language summary
The ketogenic diet (KD) has been shown in several studies to result in weight loss compared to a conventional high-carbohydrate, low-fat diet (HCLF). It is thought that this sort of diet may inhibit the appetite and increase feelings of being fuller for longer. However, its effects on other biological functions which can lead to weight loss are unclear. This randomised control trial of 11 individuals aimed to determine the effect of the KD on thyroid function, which controls the conversion of calories into energy and therefore has a role in fat storage. The results showed that KD resulted in a higher loss of body mass than the HCLF diet and one of the thyroid hormones (T3) was decreased. However, hormones which stimulate thyroid function remained unchanged. It was concluded that changes in metabolism can occur following the KD, which may contribute to a greater loss of weight compared to a HCLF diet. This study could be used by healthcare professionals to understand that the ketogenic diet may be more effective at weight loss than a standard HCLF diet. However larger scale trials are warranted.
Abstract
BACKGROUND The ketogenic diet (KD) has been shown to result in body mass loss in people with disease as well as healthy people, yet the effect of the KD on thyroid function and metabolism are unknown. OBJECTIVE We aimed to determine the effects of a KD, compared with an isocaloric high-carbohydrate low-fat (HCLF) diet, on resting metabolic rate and thyroid function in healthy individuals. DESIGN Eleven healthy, normal-weight participants (mean(SD) age: 30(9) years) completed this randomized crossover-controlled study. For a minimum of three weeks on each, participants followed two isocaloric diets: a HCLF diet (55%carbohydrate, 20%fat, 25%protein) and a KD (15%carbohydrate, 60%fat, 25% protein), with a one-week washout period in-between. Importantly, while on the KD, the participants were required to remain in a state of nutritional ketosis for three consecutive weeks. Crossover analyses and linear mixed models were used to assess effect of diet on body mass, thyroid function and resting metabolic rate. RESULTS Both dietary interventions resulted in significant body mass loss (p<0.05) however three weeks of sustained ketosis (KD) resulted in a greater loss of body mass (mean (95%CI): -2.9 (-3.5, -2.4) kg) than did three weeks on the HCLF diet (-0.4 (-1.0, 0.1) kg, p < 0.0001). Compared to pre-diet levels, the change in plasma T3 concentration was significantly different between the two diets (p = 0.003), such that plasma T3 concentration was significantly lower following the KD diet (4.1 (3.8, 4.4) pmol/L, p<0.0001) but not different following the HCLF diet (4.8 (4.5, 5.2) pmol/L, p = 0.171. There was a significant increase in T4 concentration from pre-diet levels following the KD diet (19.3 (17.8, 20.9) pmol/L, p < 0.0001), but not following the HCLF diet (17.3 (15.7, 18.8) pmol.L, p = 0.28). The magnitude of change in plasma T4 concentration was not different between the two diets (p = 0.4). There was no effect of diet on plasma thyroid stimulating hormone concentration (p = 0.27). There was a significantly greater T3:T4 ratio following the HCLF diet (0.41 (0.27, 0.55), p < 0.0001) compared to pre-diet levels but not following the KD diet (0.25 (0.12, 0.39), p = 0.80). CONCLUSIONS Although the diets were isocaloric and physical activity and resting metabolic rate remained constant, the participants lost more mass after the KD than after the HCLF diet. The observed significant changes in triiodothyronine concentration suggest that unknown metabolic changes occur in nutritional ketosis, changes that warrant further investigation. TRIAL REGISTRATION Pan African Clinical Trial Registry: PACTR201707002406306 URL: https://pactr.samrc.ac.za/.