1.
Effects of dietary fibers or probiotics on functional constipation symptoms and roles of gut microbiota: a double-blinded randomized placebo trial.
Lai, H, Li, Y, He, Y, Chen, F, Mi, B, Li, J, Xie, J, Ma, G, Yang, J, Xu, K, et al
Gut microbes. 2023;15(1):2197837
-
-
-
Free full text
-
Plain language summary
Functional constipation is characterised by continuously difficult, incomplete, or infrequent defecation, without an organic origin. Effective intervention strategies are required to relieve the functional constipation difficulties, particularly in rapidly aging populations, such as Chinese populations. The aim of this study was to evaluate the effectiveness of three dietary fibre formulas (polydextrose, psyllium husk, and wheat bran + psyllium husk) and one probiotic supplement on the improvement of constipation symptoms among Chinese adults with functional constipation. This study was a double-blinded randomised placebo-controlled trial which enrolled 250 participants who were randomly assigned to one of the five groups. Results showed: - that daily supplement of three prebiotic formulas with dietary fibres, or a probiotic formula effectively relieved hard stool in functional constipation patients after 4 weeks intervention. - the capacity of gut microbial genera in shaping the intervention responsiveness in the improvement of bowel movement frequency, Bristol stool scale score, and degree of defecation straining. Authors conclude that the pre or probiotic interventions may modulate gut microbiota, associated with intestinal health.
Abstract
Dietary fibers/probiotics may relieve constipation via optimizing gut microbiome, yet with limited trial-based evidences. We aimed to evaluate the effects of formulas with dietary fibers or probiotics on functional constipation symptoms, and to identify modulations of gut microbiota of relevance. We conducted a 4-week double-blinded randomized placebo-controlled trial in 250 adults with functional constipation. Intervention: A: polydextrose; B: psyllium husk; C: wheat bran + psyllium husk; D: Bifidobacterium animalis subsp. lactis HN019 + Lacticaseibacillus rhamnosus HN001; Placebo: maltodextrin. Oligosaccharides were also included in group A to D. 16S rRNA sequencing was used to assess the gut microbiota at weeks 0, 2, and 4. A total of 242 participants completed the study. No time-by-group effect was observed for bowel movement frequency (BMF), Bristol stool scale score (BSS), and degree of defecation straining (DDS), while BSS showed mean increases of 0.95-1.05 in group A to D (all P < 0.05), but not significantly changed in placebo (P = 0.170), and 4-week change of BSS showed similarly superior effects of the interventions as compared placebo. Group D showed a marginal reduction in plasma 5-hydroxytryptamine. Group A resulted in a higher Bifidobacterium abundance than placebo at week 2 and 4. Fourteen genera showed intervention-specific increasing or decreasing trends continuously, among which Anaerostipes showed increasing trends in groups B and C, associated with BMF increase. Random forest models identified specific baseline microbial genera panels predicting intervention responders. In conclusion, we found that the dietary fibers or probiotics may relieve hard stool, with intervention-specific changes in gut microbiota relevant to constipation relief. Baseline gut microbiota may predispose the intervention responsiveness. ClincialTrials.gov number, NCT04667884. What is the context?Supplementation of dietary fibers, such as psyllium husk or wheat bran (10 ~ 15 g/day) may relieve constipation symptoms, but bloating and flatulence are major concerns on a high fiber intake.Functional constipation patients had alternated gut microbiota profiles, while meta-analysis suggested that multispecies probiotics may increase bowel movement frequency and relieve hard stool in functional constipation.Dietary fibers or probiotics may lead to before-after changes of gut microbiota in patients with functional constipation, but time-series continued changes of gut microbiota during the intervention are unknown.Elevation of 5-hydroxytryptamine synthesis in enterochromaffin cells may affect bowel movement. And the elevated plasma 5-hydroxytryptamine was observed in functional constipation patients.What is new? Daily supplement of three prebiotic formulas with dietary fibers (polydextrose, psyllium husk, wheat bran, together with oligosaccharides), or a probiotic formula with Bifidobacterium animalis subsp. lactis HN019 + Lacticaseibacillus rhamnosus HN001 effectively relieved hard stool in functional constipation patients after 4 weeks intervention.We identified continued increasing or decreasing gut microbial genera over the intervention. Dietary fiber – gut microbiota (Anaerostipes)—constipation relieve (bowel movement frequency) evidence axis was identified in this human trial.Probiotic supplementation marginally reduced plasma 5-hydroxytryptamine, possibly associated with changes in BMF-related gut microbial genera.Intervention-specific baseline gut microbiota well predicted the responsiveness of constipation symptom relief.What is the impact? We provided references for the dosage and duration of dietary fiber/probiotics recommendations for adults with functional constipation, and advanced the microbial genera evidences of the fibers/probiotics-microbiota-laxation theory in humans.
2.
Probio-X Relieves Symptoms of Hyperlipidemia by Regulating Patients' Gut Microbiome, Blood Lipid Metabolism, and Lifestyle Habits.
Wang, H, Ma, C, Li, Y, Zhang, L, A, L, Yang, C, Zhao, F, Han, H, Shang, D, Yang, F, et al
Microbiology spectrum. 2023;11(3):e0444022
-
-
-
Free full text
Plain language summary
A long-term high-fat diet will not only disrupt the balance of lipid metabolism in the body and cause metabolic disorders but also lead to chronic diseases, such as hyperlipidaemia, type 2 diabetes, hypertension, and obesity. Hyperlipidaemia is also an important contributing factor in cardiovascular disease. The aim of this study was to analyse the effects of a mixed probiotic formulation on hyperlipidaemia, with focus on changes in patients’ gut microbiota and their metabolic potential. This study was a 3-month randomised controlled intervention trial. A total of 56 hyperlipidaemic patients were recruited and randomised into either the placebo or probiotic (receiving a mixed probiotic formulation) group. Results show that the intake of the probiotic mix effectively reduced the serum levels of total cholesterol and low-density lipoprotein cholesterol, while increasing serum high-density lipoprotein cholesterol levels, in patients with hyperlipidaemia. In fact, there was a strong association between the desirable changes in patients’ lifestyle habits and lowering of these indexes. Furthermore, although insignificant changes were observed in the lipid metabolome and gut microbiota structure, some interesting fecal bacteria and blood metabolites increased significantly after Probio-X intervention. Authors conclude that their findings show that probiotic administration is a promising approach in managing hyperlipidaemia and improving public health.
Abstract
Hyperlipidemia is a key risk factor for cardiovascular disease, and it is associated with lipid metabolic disorders and gut microbiota dysbiosis. Here, we aimed to investigate the beneficial effects of 3-month intake of a mixed probiotic formulation in hyperlipidemic patients (n = 27 and 29 in placebo and probiotic groups, respectively). The blood lipid indexes, lipid metabolome, and fecal microbiome before and after the intervention were monitored. Our results showed that probiotic intervention could significantly decrease the serum levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol (P < 0.05), while increasing the levels of high-density lipoprotein cholesterol (P < 0.05) in patients with hyperlipidemia. Probiotic recipients showing improved blood lipid profile also exhibited significant differences in their lifestyle habits after the 3-month intervention, with an increase in daily intake of vegetable and dairy products, as well as weekly exercise time (P < 0.05). Moreover, two blood lipid metabolites (namely, acetyl-carnitine and free carnitine) significantly increased after probiotic supplementation cholesterol (P < 0.05). In addition, probiotic-driven mitigation of hyperlipidemic symptoms were accompanied by increases in beneficial bacteria like Bifidobacterium animalis subsp. lactis and Lactiplantibacillus plantarum in patients' fecal microbiota. These results supported that mixed probiotic application could regulate host gut microbiota balance, lipid metabolism, and lifestyle habits, through which hyperlipidemic symptoms could be alleviated. The findings of this study urge further research and development of probiotics into nutraceuticals for managing hyperlipidemia. IMPORTANCE The human gut microbiota have a potential effect on the lipid metabolism and are closely related to the disease hyperlipidemia. Our trial has demonstrated that 3-month intake of a mixed probiotic formulation alleviates hyperlipidemic symptoms, possibly by modulation of gut microbes and host lipid metabolism. The findings of the present study provide new insights into the treatment of hyperlipidemia, mechanisms of novel therapeutic strategies, and application of probiotics-based therapy.
3.
Protective effect of probiotics in patients with non-alcoholic fatty liver disease.
Cai, GS, Su, H, Zhang, J
Medicine. 2020;99(32):e21464
-
-
-
Free full text
-
Plain language summary
Non-alcoholic fatty liver disease (NAFLD) is common in people with obesity and is characterised by high amounts of fat stored in the liver. Diet and exercise are the standard treatments, however recent studies have indicated that the gut microbiota may have an important role. This randomised control trial of 140 patients with NAFLD, aimed to assess the effect of probiotics when added to standard therapy for 3 months. The results showed that although gut microbiota, some aspects of liver function, blood lipids and blood sugars were all improved in individuals on standard therapy, there were additional improvements in those on standard therapy plus probiotics. It was concluded that although standard therapy alone is adequate to improve NAFLD, probiotics plus standard therapy was superior to standard therapy alone and effective in treatment of NAFLD. This study could be used by health professionals to justify the addition of probiotics to standard therapy to further improve NAFLD outcomes.
Abstract
To investigate the effects of probiotics on liver function, glucose and lipids metabolism, and hepatic fatty deposition in patients with non-alcoholic fatty liver disease (NAFLD).Totally 140 NAFLD cases diagnosed in our hospital from March 2017 to March 2019 were randomly divided into the observation group and control group, 70 cases in each. The control group received the diet and exercise therapy, while the observation group received oral probiotics based on the control group, and the intervention in 2 groups lasted for 3 months. The indexes of liver function, glucose and lipids metabolism, NAFLD activity score (NAS), and conditions of fecal flora in 2 groups were compared before and after the treatment.Before the treatment, there were no significant differences on alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamine transferase (GGT), total bilirubin (TBIL), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), insulin resistance index (HOMA-IR), NAFLD activity score (NAS), and conditions of fecal flora in 2 groups (P > .05). After the treatment, ALT, AST, GGT, TC, TG, HOMA-IR, NAS, and conditions of fecal flora in the observation group were better than those in the control group, and the observation group was better after treatment than before. All these above differences were statistically significant (P < .05).Probiotics can improve some liver functions, glucose and lipids metabolism, hepatic fatty deposition in patients with NAFLD, which will enhance the therapeutic effects of NAFLD.