1.
Daily skin-to-skin contact alters microbiota development in healthy full-term infants.
Eckermann, HA, Meijer, J, Cooijmans, K, Lahti, L, de Weerth, C
Gut microbes. 2024;16(1):2295403
-
-
-
Free full text
-
Plain language summary
The gut microbiome develops in early life and is influenced by several different factors. Skin-to-skin contact (SSC), whereby an infant and mother have bare skin contact, has been shown to be associated with improved brain and heart development, decreased anxiety and stress, and longer breast-feeding duration. In animals, SSC has also been shown to alter the infants gut microbiota, but this has not been investigated in humans. This study of 116 infant-mother pairs aimed to determine the effect of SSC compared to normal care on the infant gut microbiome and the gut-brain connection. The results showed that there was an overall difference in microbiota diversity between SSC and normal care infants in early but not late infancy. The development of the gut microbiota was also affected in early and late infancy. In SSC infants there was a lower abundance of Faecalibacterium, Eubacterium hallii, and Rothia and higher abundance of Flavonifractor, Lacticaseibacillus, Bacteroides and Megasphaera compared to the normal care infants. Some gut-brain communication pathways differed between the two groups including those associated with anxiety and stress. It was concluded that SSC may influence gut microbiota development. This study could be used by healthcare professionals to understand that SSC can alter the infants gut microbiome, however further studies are required to determine the significance of this.
Abstract
The gut microbiota is vital for human body development and function. Its development in early life is influenced by various environmental factors. In this randomized controlled trial, the gut microbiota was obtained as a secondary outcome measure in a study on the effects of one hour of daily skin-to-skin contact (SSC) for five weeks in healthy full-term infants. Specifically, we studied the effects on alpha/beta diversity, volatility, microbiota maturation, and bacterial and gut-brain-axis-related functional abundances in microbiota assessed thrice in the first year. Pregnant Dutch women (n = 116) were randomly assigned to the SSC or care-as-usual groups. The SSC group participants engaged in one hour of daily SSC from birth to five weeks of age. Stool samples were collected at two, five, and 52 weeks and the V4 region was sequenced. We observed significant differences in the microbiota composition, bacterial abundances, and predicted functional pathways between the groups. The SSC group exhibited lower microbiota volatility during early infancy. Microbiota maturation was slower in the SSC group during the first year and our results suggested that breastfeeding duration may have partially mediated this relation. Our findings provide evidence that postpartum SSC may influence microbiota development. Replication is necessary to validate and generalize these results. Future studies should include direct stress measurements and extend microbiota sampling beyond the first year to investigate stress as a mechanism and research SSC's impact on long-term microbiota maturation trajectories.
2.
Impact of probiotic Saccharomyces boulardii on the gut microbiome composition in HIV-treated patients: A double-blind, randomised, placebo-controlled trial.
Villar-García, J, Güerri-Fernández, R, Moya, A, González, A, Hernández, JJ, Lerma, E, Guelar, A, Sorli, L, Horcajada, JP, Artacho, A, et al
PloS one. 2017;12(4):e0173802
-
-
-
Free full text
Plain language summary
Recent studies have shown that HIV severely damages the gastrointestinal (GI) mucosal barrier, resulting in microbes passing from the GI tract to the circulatory system leading to chronic inflammation. The aim of this randomised double blind study was to analyse the beneficial effects of probiotic supplementation on the gut microbiome composition. 44 chronic HIV infected patients were treated with 12 weeks of specific strain of probiotic called Saccharomyces Boulardii. The authors found that supplementation with the probiotic changed the composition of gut microbiome, with a decrease in pathogenic bacteria observed in the study group. However, no correlation could be established with regard to inflammation. The authors concluded that identifying the pro inflammatory species in the gut can be the markers of poor immune response.
Abstract
Dysbalance in gut microbiota has been linked to increased microbial translocation, leading to chronic inflammation in HIV-patients, even under effective HAART. Moreover, microbial translocation is associated with insufficient reconstitution of CD4+T cells, and contributes to the pathogenesis of immunologic non-response. In a double-blind, randomised, placebo-controlled trial, we recently showed that, compared to placebo, 12 weeks treatment with probiotic Saccharomyces boulardii significantly reduced plasma levels of bacterial translocation (Lipopolysaccharide-binding protein or LBP) and systemic inflammation (IL-6) in 44 HIV virologically suppressed patients, half of whom (n = 22) had immunologic non-response to antiretroviral therapy (<270 CD4+Tcells/μL despite long-term suppressed viral load). The aim of the present study was to investigate if this beneficial effect of the probiotic Saccharomyces boulardii is due to modified gut microbiome composition, with a decrease of some species associated with higher systemic levels of microbial translocation and inflammation. In this study, we used 16S rDNA gene amplification and parallel sequencing to analyze the probiotic impact on the composition of the gut microbiome (faecal samples) in these 44 patients randomized to receive oral supplementation with probiotic or placebo for 12 weeks. Compared to the placebo group, in individuals treated with probiotic we observed lower concentrations of some gut species, such as those of the Clostridiaceae family, which were correlated with systemic levels of bacterial translocation and inflammation markers. In a sub-study of these patients, we observed significantly higher parameters of microbial translocation (LBP, soluble CD14) and systemic inflammation in immunologic non-responders than in immunologic responders, which was correlated with a relative abundance of specific gut bacterial groups (Lachnospiraceae genus and Proteobacteria). Thus, in this work, we propose a new therapeutic strategy using the probiotic yeast S. boulardii to modify gut microbiome composition. Identifying pro-inflammatory species in the gut microbiome could also be a useful new marker of poor immune response and a new therapeutic target.