1.
Possible long-term endocrine-metabolic complications in COVID-19: lesson from the SARS model.
Mongioì, LM, Barbagallo, F, Condorelli, RA, Cannarella, R, Aversa, A, La Vignera, S, Calogero, AE
Endocrine. 2020;68(3):467-470
-
-
-
Free full text
-
Plain language summary
Coronavirus disease 2019 (Covid-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Little is known about how it affects the endocrine system and it is likely that some patients who have recovered may suffer long-term consequences. The severe acute respiratory syndrome coronavirus (SARS-CoV) that caused the SARS outbreak in 2003 has many similarities. This editorial looks at the possible effects on the endocrine system of SARS-CoV-2 by looking at the long-term effects seen in SARS. In the case of SARS-CoV, it was thought that the virus could directly damage pancreatic cells leading to type 2 diabetes. It is hypothesized that Covid-19 patients could develop this condition by the same mechanism. Although no study on SARS reported the link between obesity and higher mortality rate, there is evidence that obese Covid-19 patients have worse clinical outcomes. There is no data yet for Covid-19, but adrenal insufficiency and impaired thyroid function were shown in some cases of SARS. To identify and treat any possible long-term effects of Covid-19, endocrinologists should monitor hormone levels and metabolic functions.
Abstract
The outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is centralizing the interest of the scientific world. In the next months, long-term consequences on the endocrine system may arise following COVID-19. In this article, we hypothesized the effects of SARS-CoV-2 taking into account what learned from the severe acute respiratory syndrome coronavirus (SARS-CoV) that caused SARS in 2003.
2.
COVID-19 infection: the perspectives on immune responses.
Shi, Y, Wang, Y, Shao, C, Huang, J, Gan, J, Huang, X, Bucci, E, Piacentini, M, Ippolito, G, Melino, G
Cell death and differentiation. 2020;27(5):1451-1454
-
-
Free full text
-
Plain language summary
The SARS-CoV-2 infection triggers an immune response which varies greatly from one person to another. It can be roughly divided into three stages: stage I, an asymptomatic incubation period with or without detectable virus; stage II, non-severe symptomatic period with the presence of virus; stage III, severe respiratory symptomatic stage with high viral load. Currently around 15% of people infected end up in severe stage III. There appears to be a two-phase immune response; an early protective phase and a second inflammation-driven damaging phase. In phase one the adaptive immune system responds to the virus. Being in good general health is important in this phase to limiting the progression of the disease to a more severe stage. In phase two the innate immune system response to tissue damage caused by the virus could lead to widespread inflammation of the lungs and acute respiratory distress syndrome or respiratory failure. Therapeutically this raises the question of whether the immune response should be boosted in phase one and suppressed in phase two. There also appears to be an element of viral relapse in some patients discharged from hospital indicating that a virus-eliminating immune response may be difficult to achieve naturally. These same patients may also not respond to vaccines. Overall, it is still unclear why some people develop severe disease, whilst others do not. Overall immunity alone does not explain the differences in disease presentation.