-
1.
Brachial plexopathy as a result of anatomical prone position in COVID-19 patients-Systematic review.
Toruńska, E, Owczarek-Konopka, M, Konopka, M, Gielecki, JS, Klepacki, Ł
Clinical anatomy (New York, N.Y.). 2024;(1):92-101
Abstract
In patients with COVID-19 different methods improving therapy have been used, including one of the anatomical position-prone position, to support ventilation. The aim of this review was to summarize the cases of brachial plexopathy as a consequence of the prone position in COVID-19 patients, and thus bring closer the issue of the brachial plexus in the face of clinical aspects of its function, palsy, and consequences. The Preferred Reporting Items for Systematic Reviews and Meta-analyses statement was followed, inclusion criteria were created according to Patients, Interventions, Comparisons, Outcomes (PICO). PubMed and Scopus were searched until April 1, 2023 by entering the key term with Boolean terms. The risk of bias was assessed using JBI's critical appraisal tools. Fifteen papers with 30 patients were included in the review. This study showed that brachial plexopathy after the prone position occurs more often among males, who are at least 50 years old with comorbidities like hypertension, overweight, and diabetes mellitus. The most common symptoms were weakness, pain, and motion deficits. Duration of the prone position session and the number of episodes were different as well as the modification of positioning. Brachial plexopathy is a significant problem during prone position, especially when hospitalization is prolonged, patients are males, have comorbidities, and changes in body weight. Attention should be drawn to understand the anatomy of the brachial plexus, correct positioning, avoiding factors worsening the prognosis, and proper nutrition of the patients.
-
2.
Systematic review and meta-analysis on the impact of COVID-19 related restrictions on air quality in low- and middle-income countries.
Navaratnam, AMD, Williams, H, Sharp, SJ, Woodcock, J, Khreis, H
The Science of the total environment. 2024;:168110
Abstract
BACKGROUND Low- and middle-income countries (LMIC) are disproportionately affected by air pollution and its health burden, representing a global inequity. The COVID-19 pandemic provided a unique opportunity to investigate the impact of unprecedented lockdown measures on air pollutant concentrations globally. We aim to quantify air pollutant concentration changes across LMIC settings as a result of COVID-19 restrictions. METHODS Searches for this systematic review and meta-analysis were carried out across five databases on 30th March 2022; MEDLINE, Embase, Web of Science, Scopus and Transport Research Information Documentation. Modelling and observational studies were included, as long as the estimates reflected city or town level data and were taken exclusively in pre-lockdown and lockdown periods. Mean percentage changes per pollutant were calculated and meta-analyses were carried out to calculate mean difference in measured ground-level observed concentrations for each pollutant (PROSPERO CRD42022326924). FINDINGS Of the 2982 manuscripts from initial searches, 256 manuscripts were included providing 3818 percentage changes of all pollutants. No studies included any countries from Sub-Saharan Africa and 34 % and 39.4 % of studies were from China and India, respectively. There was a mean percentage change of -37.4 %, -21.7 %, -54.6 %, -39.1 %, -48.9 %, 16.9 %, -34.9 %, -30.6 % and - 14.7 % for black carbon (BC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), ozone (O3), particulate matter 10 (PM10) and 2.5 (PM2.5) and sulphur dioxide (SO2), respectively. Meta-analysis included 100 manuscripts, providing 908 mean concentration differences, which showed significant reduction in mean concentration in all study settings for BC (-0.46 μg/m3, PI -0.85; -0.08), CO (-0.25 mg/m3, PI -0.44; -0.03), NO2 (-19.41 μg/m3, PI -31.14; -7.68) and NOx (-22.32 μg/m3, PI -40.94; -3.70). INTERPRETATION The findings of this systematic review and meta-analysis quantify and confirm the trends reported across the globe in air pollutant concentration, including increases in O3. Despite the majority of global urban growth occurring in LMIC, there are distinct geographical gaps in air pollution data and, where it is available, differing approaches to analysis and reporting.
-
3.
Update on fungal lipid biosynthesis inhibitors as antifungal agents.
Vishwakarma, M, Haider, T, Soni, V
Microbiological research. 2024;:127517
Abstract
Fungal diseases today represent a world-wide problem. Poor hygiene and decreased immunity are the main reasons behind the manifestation of this disease. After COVID-19, an increase in the rate of fungal infection has been observed in different countries. Different classes of antifungal agents, such as polyenes, azoles, echinocandins, and anti-metabolites, as well as their combinations, are currently employed to treat fungal diseases; these drugs are effective but can cause some side effects and toxicities. Therefore, the identification and development of newer antifungal agents is a current need. The fungal cell comprises many lipids, such as ergosterol, phospholipids, and sphingolipids. Ergosterol is a sterol lipid that is only found in fungal cells. Various pathways synthesize all these lipids, and the activities of multiple enzymes govern these pathways. Inhibiting these enzymes will ultimately impede the lipid synthesis pathway, and this phenomenon could be a potential antifungal therapy. This review will discuss various lipid synthesis pathways and multiple antifungal agents identified as having fungal lipid synthesis inhibition activity. This review will identify novel compounds that can inhibit fungal lipid synthesis, permitting researchers to direct further deep pharmacological investigation and help develop drug delivery systems for such compounds.
-
4.
The effect of the urban exposome on COVID-19 health outcomes: A systematic review and meta-analysis.
Houweling, L, Maitland-Van der Zee, AH, Holtjer, JCS, Bazdar, S, Vermeulen, RCH, Downward, GS, Bloemsma, LD
Environmental research. 2024;(Pt 2):117351
-
-
Free full text
-
Abstract
BACKGROUND The global severity of SARS-CoV-2 illness has been associated with various urban characteristics, including exposure to ambient air pollutants. This systematic review and meta-analysis aims to synthesize findings from ecological and non-ecological studies to investigate the impact of multiple urban-related features on a variety of COVID-19 health outcomes. METHODS On December 5, 2022, PubMed was searched to identify all types of observational studies that examined one or more urban exposome characteristics in relation to various COVID-19 health outcomes such as infection severity, the need for hospitalization, ICU admission, COVID pneumonia, and mortality. RESULTS A total of 38 non-ecological and 241 ecological studies were included in this review. Non-ecological studies highlighted the significant effects of population density, urbanization, and exposure to ambient air pollutants, particularly PM2.5. The meta-analyses revealed that a 1 μg/m3 increase in PM2.5 was associated with a higher likelihood of COVID-19 hospitalization (pooled OR 1.08 (95% CI:1.02-1.14)) and death (pooled OR 1.06 (95% CI:1.03-1.09)). Ecological studies, in addition to confirming the findings of non-ecological studies, also indicated that higher exposure to nitrogen dioxide (NO2), ozone (O3), sulphur dioxide (SO2), and carbon monoxide (CO), as well as lower ambient temperature, humidity, ultraviolet (UV) radiation, and less green and blue space exposure, were associated with increased COVID-19 morbidity and mortality. CONCLUSION This systematic review has identified several key vulnerability features related to urban areas in the context of the recent COVID-19 pandemic. The findings underscore the importance of improving policies related to urban exposures and implementing measures to protect individuals from these harmful environmental stressors.
-
5.
Hydrogen sulfide: From a toxic gas to a potential therapy for COVID-19 and inflammatory disorders.
Kumar, M
Nitric oxide : biology and chemistry. 2023;:8-15
Abstract
COVID-19 has been shown to induce inflammatory disorders and CNS manifestations. Swift and efficient treatment strategies are urgently warranted for the management of COVID, inflammatory and neurological disorders. Hydrogen sulfide (H2S) has been associated with several clinical disorders due to its potential to influence a broad range of biological signalling pathways. According to recent clinical studies, COVID patients with lower physiological H2S had higher fatality rates. These findings clearly demonstrate an inverse correlation between H2S levels and the severity of COVID-19. H2S has been proposed as a protective molecule because of its antioxidant, anti-inflammatory, and antiviral properties. Various H2S-releasing prodrugs, hybrids and natural compounds have been tested for their therapeutic efficacy in viral infections and inflammatory disorders. In this review, I am highlighting the rationale for using H2S-based interventions for the management of COVID-19 and post-infection inflammatory disorders including neuroinflammation. I am also proposing therepurposing of existing H2S-releasing prodrugs, developing new NO-H2S-hybrids, targeting H2S metabolic pathways, and using H2S-producing dietary supplements as viable defensive strategies against SARS-CoV-2 infection and COVID-19 pathologies.
-
6.
The many facets of CD26/dipeptidyl peptidase 4 and its inhibitors in disorders of the CNS - a critical overview.
Bernstein, HG, Keilhoff, G, Dobrowolny, H, Steiner, J
Reviews in the neurosciences. 2023;(1):1-24
Abstract
Dipeptidyl peptidase 4 is a serine protease that cleaves X-proline or X-alanine in the penultimate position. Natural substrates of the enzyme are glucagon-like peptide-1, glucagon inhibiting peptide, glucagon, neuropeptide Y, secretin, substance P, pituitary adenylate cyclase-activating polypeptide, endorphins, endomorphins, brain natriuretic peptide, beta-melanocyte stimulating hormone and amyloid peptides as well as some cytokines and chemokines. The enzyme is involved in the maintenance of blood glucose homeostasis and regulation of the immune system. It is expressed in many organs including the brain. DPP4 activity may be effectively depressed by DPP4 inhibitors. Apart from enzyme activity, DPP4 acts as a cell surface (co)receptor, associates with adeosine deaminase, interacts with extracellular matrix, and controls cell migration and differentiation. This review aims at revealing the impact of DPP4 and DPP4 inhibitors for several brain diseases (virus infections affecting the brain, tumours of the CNS, neurological and psychiatric disorders). Special emphasis is given to a possible involvement of DPP4 expressed in the brain.While prominent contributions of extracerebral DPP4 are evident for a majority of diseases discussed herein; a possible role of "brain" DPP4 is restricted to brain cancers and Alzheimer disease. For a number of diseases (Covid-19 infection, type 2 diabetes, Alzheimer disease, vascular dementia, Parkinson disease, Huntington disease, multiple sclerosis, stroke, and epilepsy), use of DPP4 inhibitors has been shown to have a disease-mitigating effect. However, these beneficial effects should mostly be attributed to the depression of "peripheral" DPP4, since currently used DPP4 inhibitors are not able to pass through the intact blood-brain barrier.
-
7.
New Insights into Prospective Health Potential of ω-3 PUFAs.
Lakshimi, VI, Kavitha, M
Current nutrition reports. 2023
Abstract
PURPOSE OF REVIEW Docosahexaenoic acid and eicosapentaenoic acid are the two essential long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFAs) promoting human health which are obtained from diet or supplementation. The eicosanoids derived from ω-6 and ω-3 PUFAs have opposite characteristics of pro- and anti-inflammatory activities. The proinflammatory effects of ω-6 PUFAs are behind the pathology of the adverse health conditions of PUFA metabolism like cardiovascular diseases, neurological disorders, and inflammatory diseases. A balanced ω-6 to ω-3 ratio of 1-4:1 is critical to prevent the associated disorders. But due to modern agricultural practices, there is a disastrous shift in this ratio to 10-20:1. This review primarily aims to discuss the myriad health potentials of ω-3 PUFAs uncovered through recent research. It further manifests the importance of maintaining a balanced ω-6 to ω-3 PUFA ratio. RECENT FINDINGS ω-3 PUFAs exhibit protective effects against diabetes mellitus-associated complications including diabetic retinopathy, diabetic nephropathy, and proteinuria. COVID-19 is also not an exception to the health benefits of ω-3 PUFAs. Supplementation of ω-3 PUFAs improved the respiratory and clinical symptoms in COVID-19 patients. ω-3 PUFAs exhibit a variety of health benefits including anti-inflammatory property and antimicrobial property and are effective in protecting against various health conditions like atherosclerosis, cardiovascular diseases, diabetes mellitus, COVID-19, and neurological disorders. In the present review, various health potentials of ω-3 PUFAs are extensively reviewed and summarized. Further, the importance of a balanced ω-6 to ω-3 PUFA ratio has been emphasized besides stating the diverse sources of ω-3 PUFA.
-
8.
Interlinkages between Climate Change and Food Systems: The Impact on Child Malnutrition-Narrative Review.
Agostoni, C, Baglioni, M, La Vecchia, A, Molari, G, Berti, C
Nutrients. 2023;(2)
Abstract
The pandemics of obesity, undernutrition, and climate change represent severe threats to child health. They co-occur; interact with each other to produce sequelae at biological, psychological, or social levels; and share common underlying drivers. In this paper, we review the key issues concerning child diet and nutritional status, focusing on the interactions with climate and food systems. Inadequate infant and young child feeding practices, food insecurity, poverty, and limited access to health services are the leading causes of malnutrition across generations. Food system industrialization and globalization lead to a double burden of malnutrition, whereby undernutrition (i.e., stunting, wasting, and deficiencies in micronutrients) coexists with overweight and obesity, as well as to harmful effects on climate. Climate change and the COVID-19 pandemic are worsening child malnutrition, impacting the main underlying causes (i.e., household food security, dietary diversity, nutrient quality, and access to maternal and child health), as well as the social, economic, and political factors determining food security and nutrition (livelihoods, income, infrastructure resources, and political context). Existing interventions have the potential to be further scaled-up to concurrently address undernutrition, overnutrition, and climate change by cross-cutting education, agriculture, food systems, and social safety nets. Several stakeholders must work co-operatively to improve global sustainable nutrition.
-
9.
Antiinflammatory Activities of Curcumin and Spirulina: Focus on Their Role against COVID-19.
Perna, A, Hay, E, Sellitto, C, Del Genio, E, De Falco, M, Guerra, G, De Luca, A, De Blasiis, P, Lucariello, A
Journal of dietary supplements. 2023;(2):372-389
Abstract
Nutraceuticals have for several years aroused the interest of researchers for their countless properties, including the management of viral infections. In the context of the COVID-19 pandemic, studies and research on the antiviral properties of nutraceuticals have greatly increased. More specifically, over the past two years, researchers have focused on analyzing the possible role of nutraceuticals in reducing the risk of SARS-CoV-2 infection or mitigating the symptoms of COVID-19. Among nutraceuticals, turmeric, extracted from the rhizome of the Curcuma Longa plant, and spirulina, commercial name of the cyanobacterium Arthrospira platensis, have assumed considerable importance in recent years. The purpose of this review is to collect, through a search of the most recent articles on Pubmed, the scientific evidence on the role of these two compounds in the fight against COVID-19. In the last two years many hypotheses, some confirmed by clinical and experimental studies, have been made on the possible use of turmeric against COVID-19, while on spirulina and its possible role against SARS-CoV-2 infection information is much less. The demonstrated antiviral properties of spirulina and the fact that these cyanobacteria may modulate or modify some mechanisms also involved in the onset of COVID-19, lead us to think that it may have the same importance as curcumin in fighting this disease and to speculate on the possible combined use of these two substances to obtain a synergistic effect.
-
10.
Effect of COVID-19 outbreak on the diet, body weight and food security status of students of higher education: a systematic review.
Jehi, T, Khan, R, Halawani, R, Dos Santos, H
The British journal of nutrition. 2023;(11):1916-1928
Abstract
The COVID-19 pandemic has impacted college students' lifestyles and placed them at a greater risk of obesity and food insecurity. The purpose of the systematic review was to consolidate evidence for the effect of Covid-19 on students' dietary quality, dietary habits, body weight and food security status. A comprehensive literature search was conducted utilising various databases including Google Scholar, MEDLINE, ScienceDirect, Embase and Scopus to identify relevant studies. To be incorporated in this review, studies had to include higher education students, measure the prevalence of food insecurity and assess the dietary and body weight changes during the COVID-19 pandemic. The studies showed that the diet quality of college students was compromised during the pandemic in many nations due to the decrease in the intake of whole grains, dairy products, legumes, nuts, fruits and vegetables and the increase in consumption of alcohol, confectionery products and refined grains. There was an increase in the frequency of cooking, binge eating, breakfast skipping and unhealthy snacking. These modifications, in return, were associated with body weight changes, with no less than 20 to 30 % of students gaining weight during the pandemic. The pandemic also impacted food security status of students, with over 30% being food insecure worldwide. The COVID-19 outbreak has exacerbated the students' diet quality and dietary habits and placed them under high risk of weight gain and food insecurity. Higher education institutions and governments should improve students' access to nutritious foods and incorporate nutrition education interventions in the curricula.