-
1.
A (poly)phenol-rich diet reduces serum and faecal calprotectin in older adults with increased intestinal permeability: the MaPLE randomised controlled trial.
Marino, M, Del Bo', C, Martini, D, Perna, S, Porrini, M, Cherubini, A, Gargari, G, Meroño, T, Hidalgo-Liberona, N, Andres-Lacueva, C, et al
BMC geriatrics. 2024;(1):707
Abstract
BACKGROUND Older subjects are at risk of elevated intestinal permeability (IP) which can lead to immune system activation and low-grade systemic inflammation. Dietary changes are a potential strategy to reduce IP. The MaPLE project evaluated the hypothesis that increasing (poly)phenol intake would beneficially impact on several important markers and pathways related to IP. The objective of the present study was to assess the effects of the MaPLE (poly)phenol-rich diet (PR-diet) on additional IP-related biomarkers and any relationships between biomarker responses. METHODS A randomised, controlled, crossover study was performed involving 51 participants (≥ 60 y) with increased IP, as determined by serum zonulin levels. Participants were randomly assigned to one of two intervention groups: a control diet (C-diet) or a PR-diet. Each intervention lasted 8 weeks and was separated by an 8-week washout period. For the present study, serum and faecal samples were used to measure zonula occludens-1 (ZO-1), occludin, adiponectin, calprotectin, faecal calprotectin, soluble cluster of differentiation 14 (sCD14), interleukin-6 receptor (IL-6R), and vascular endothelial-cadherin (VEC) levels using quantitative ELISA assays. Data were analysed using ANOVA, and Spearman and network correlation analysis were performed to identify the relationship among biomarkers at baseline. RESULTS Among the different markers analysed, a significant reduction was observed for faecal and serum calprotectin (p = 0.0378 and p = 0.0186, respectively) following the PR-diet, while a significant increase in ZO-1 was found (p = 0.001) after both the intervention periods (PR-diet and C-diet). In addition, a time effect was observed for VEC levels showing a reduction (p = 0.038) following the PR-diet. Based on network correlation analysis, two clusters of correlations were identified: one cluster with high levels of serum calprotectin, faecal calprotectin, sCD14, interleukin (IL)-6, tumor necrosis factor (TNF)-α, C-reactive protein (CRP) and bacterial DNAemia (16 S rRNA gene copies), with potential inflammatory-induced intestinal permeability. Differently, the other cluster had high levels of serum occludin, IL-6R, soluble intercellular adhesion molecule-1 (sICAM-1) and VEC, with potential inflammatory-induced endothelial dysfunction. CONCLUSIONS Overall, this study provides further support to the hypothesis that a (poly)phenol-rich diet may help to ameliorate intestinal permeability-associated conditions. In this regard, calprotectin might represent a promising biomarker since it is a protein that typically increases with age and it is considered indicative of intestinal and systemic inflammation. Further research is needed to develop targeted (poly)phenol-rich diets against age-related gut dysfunction and inflammation. TRIAL REGISTRATION 28/04/2017; ISRCTN10214981; https://doi.org/10.1186/ISRCTN10214981 .
-
2.
Plasma anthocyanins and their metabolites reduce in vitro migration of pancreatic cancer cells, PANC-1, in a FAK- and NF-kB dependent manner: Results from the ATTACH-study a randomized, controlled, crossover trial in healthy subjects.
Mostafa, H, Behrendt, I, Meroño, T, González-Domínguez, R, Fasshauer, M, Rudloff, S, Andres-Lacueva, C, Kuntz, S
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023;158:114076
-
-
-
Free full text
Plain language summary
Pancreatic cancer is commonly associated with poor prognosis and low overall five-year survival rate (5–7%) due to the early metastatic potential of pancreatic cancer cells. Strategies to improve the health outcomes in pancreatic cancer are challenging. The aims of this study where to investigate: - whether plasma metabolites, isolated after a 28-day intervention, would reduce migration of two pancreatic cancer cell lines (PANC-1 and AsPC-1); - whether expression of adhesion molecules on cancer and endothelial cells were influenced by plasma anthocyanins (ACN) metabolites; - which molecular mechanisms were involved; and - which metabolites in plasma and urine were altered during a long-term ACN intake and how they associate with the inhibitory effects on migration. This study is a randomised, double-blind, placebo-controlled, cross-over, 28-days intervention - ATTACH study (Anthocyanins Target Tumor cell Adhesion—Cancer vs. Endothelial Cell (HUVEC)). Thirty-five (female n = 27 and male n = 8) young, healthy volunteers participated in the intervention. Results show that ACN and metabolites isolated from plasma after a long-term ACN-rich juice intervention reduced the migration and expression of cell adhesion molecules in PANC-1 cancer cells in vitro through activation of two pathways [focal adhesion kinase- and nuclear factor kappa light chain enhancer of activated B cells (NF-kB)-pathways] as well as the reduction of reactive oxygen species. Authors conclude that their findings can lead to the investigation of interactions of ACNs with classical cancer prevention strategies.
Abstract
Pancreatic cancer is primarily considered to be a metastatic disease with a low 5-year survival rate. We aimed to detect if plasma-isolated anthocyanins and their metabolites (PAMs) modulate pancreatic cancer cells migration and to describe molecular targets of PAMs in this process. Plasma metabolites were isolated by solid-phase extraction before and after a 28-days intervention trial involving 35 healthy subjects comparing effects of a daily anthocyanin-rich juice intake vs. placebo. Plasma extracts were used for migration and mechanistic in vitro studies as well as for metabolomic analysis. Pancreatic PANC-1 and AsPC-1 were used for migration studies in a Boyden chamber co-cultured with endothelial cells. Expression of adhesion molecules on cancer and endothelial cells were determined by flow cytometry and NF-kB (nuclear factor-kappa B) p65 and focal adhesion kinase activation were measured by immunoassays. UHPLC-MS/MS metabolomics was done in plasma and urine samples. Plasma extracts isolated after the intake of the anthocyanin-rich juice significantly reduced PANC-1 migration, but not AsPC-1 migration. In PANC-1, and to a lower extent in endothelial cells, plasma extracts after juice intake decreased the expression of ß1- and ß4-integrins and intercellular adhesion molecule-1. Pooled plasma from volunteers with the highest inhibition of PANC-1 migration (n = 10) induced a reduction of NF-kB-p65 and FAK-phosphorylation in cancer and in endothelial cells. Concerning metabolites, 14 were significantly altered by juice intervention and PANC-1 migration was inversely associated with the increase of o-coumaric acid and peonidin-3-galactoside. PAMs were associated with lower PANC-1 cell migration opening new strategies for metastatic pancreatic cancer treatment.
-
3.
Dietary polyphenols, metabolic syndrome and cardiometabolic risk factors: An observational study based on the DCH-NG subcohort.
Lanuza, F, Zamora-Ros, R, Bondonno, NP, Meroño, T, Rostgaard-Hansen, AL, Riccardi, G, Tjønneland, A, Landberg, R, Halkjær, J, Andres-Lacueva, C
Nutrition, metabolism, and cardiovascular diseases : NMCD. 2023;33(6):1167-1178
-
-
-
Free full text
Plain language summary
Metabolic syndrome (MetS) is a cluster of metabolic disorders that increases the risk of developing chronic diseases. Cardiometabolic risk factors include high waist circumference (WC), insulin resistance, hypertension, dysglycaemia, dyslipidaemia, and altered inflammatory markers. The aim of this study was to investigate the associations between intakes of polyphenols (total polyphenols and their main classes) and the prevalence of MetS and cardiometabolic risk factors. This study is an observational sub-cohort study of 676 Danish participants of the MAX study from the Danish Diet, Cancer and Health - Next Generations (DCH-NG) cohort. Results showed that individuals with higher total polyphenol and phenolic acid intakes, were less likely to have MetS. Furthermore, for cardiovascular risk factors, intakes of total polyphenols, flavonoids and phenolic acids were associated with a lower risk of higher systolic blood pressure and lower high-density lipoprotein cholesterol. Authors conclude by suggesting that intervention studies should be undertaken to establish whether a polyphenol-rich diet can improve some cardiometabolic risk factors and can reduce or delay the onset of cardiometabolic diseases in free-living populations.
Abstract
BACKGROUND AND AIMS Polyphenol-rich foods have beneficial properties that may lower cardiometabolic risk. We aimed to prospectively investigate the relationship between intakes of dietary polyphenols, and metabolic syndrome (MetS) and its components, in 676 Danish residents from the MAX study, a subcohort of the Danish Diet, Cancer and Health-Next Generations (DCH-NG) cohort. METHODS AND RESULTS Dietary data were collected using web-based 24-h dietary recalls over one year (at baseline, and at 6 and 12 months). The Phenol-Explorer database was used to estimate dietary polyphenol intake. Clinical variables were also collected at the same time point. Generalized linear mixed models were used to investigate relationships between polyphenol intake and MetS. Participants had a mean age of 43.9y, a mean total polyphenol intake of 1368 mg/day, and 75 (11.6%) had MetS at baseline. Compared to individuals with MetS in Q1 and after adjusting for age, sex, lifestyle and dietary confounders, those in Q4 - for total polyphenols, flavonoids and phenolic acids-had a 50% [OR (95% CI): 0.50 (0.27, 0.91)], 51% [0.49 (0.26, 0.91)] and 45% [0.55 (0.30, 1.00)] lower odds of MetS, respectively. Higher total polyphenols, flavonoids and phenolic acids intakes as continuous variable were associated with lower risk for elevated systolic blood pressure (SBP) and low high-density lipoprotein cholesterol (HDL-c) (p < 0.05). CONCLUSIONS Total polyphenol, flavonoid and phenolic acid intakes were associated with lower odds of MetS. These intakes were also consistently and significantly associated with a lower risk for higher SBP and lower HDL-c concentrations.
-
4.
Dietary Sources of Anthocyanins and Their Association with Metabolome Biomarkers and Cardiometabolic Risk Factors in an Observational Study.
Mostafa, H, Meroño, T, Miñarro, A, Sánchez-Pla, A, Lanuza, F, Zamora-Ros, R, Rostgaard-Hansen, AL, Estanyol-Torres, N, Cubedo-Culleré, M, Tjønneland, A, et al
Nutrients. 2023;(5)
Abstract
Anthocyanins (ACNs) are (poly)phenols associated with reduced cardiometabolic risk. Associations between dietary intake, microbial metabolism, and cardiometabolic health benefits of ACNs have not been fully characterized. Our aims were to study the association between ACN intake, considering its dietary sources, and plasma metabolites, and to relate them with cardiometabolic risk factors in an observational study. A total of 1351 samples from 624 participants (55% female, mean age: 45 ± 12 years old) enrolled in the DCH-NG MAX study were studied using a targeted metabolomic analysis. Twenty-four-hour dietary recalls were used to collect dietary data at baseline, six, and twelve months. ACN content of foods was calculated using Phenol Explorer and foods were categorized into food groups. The median intake of total ACNs was 1.6mg/day. Using mixed graphical models, ACNs from different foods showed specific associations with plasma metabolome biomarkers. Combining these results with censored regression analysis, metabolites associated with ACNs intake were: salsolinol sulfate, 4-methylcatechol sulfate, linoleoyl carnitine, 3,4-dihydroxyphenylacetic acid, and one valerolactone. Salsolinol sulfate and 4-methylcatechol sulfate, both related to the intake of ACNs mainly from berries, were inversely associated with visceral adipose tissue. In conclusion, plasma metabolome biomarkers of dietary ACNs depended on the dietary source and some of them, such as salsolinol sulfate and 4-methylcatechol sulfate may link berry intake with cardiometabolic health benefits.
-
5.
Biomarkers of Berry Intake: Systematic Review Update.
Mostafa, H, Cheok, A, Meroño, T, Andres-Lacueva, C, Rodriguez-Mateos, A
Journal of agricultural and food chemistry. 2023;(31):11789-11805
Abstract
Berries are rich in (poly)phenols, and these compounds may be beneficial to human health. Estimating berry consumption through self-reported questionnaires has been challenging due to compliance issues and a lack of precision. Estimation via food-derived biomarkers in biofluids was proposed as a complementary alternative. We aimed to review and update the existing evidence on biomarkers of intake for six different types of berries. A systematic literature search was performed to update a previous systematic review on PubMed, Web of Science, and Scopus from January 2020 until December 2022. Out of 42 papers, only 18 studies were eligible. A multimetabolite panel is suggested for blueberry and cranberry intake. Proposed biomarkers for blueberries include hippuric acid and malvidin glycosides. For cranberries, suggested biomarkers are glycosides of peonidin and cyanidin together with sulfate and glucuronide conjugates of phenyl-γ-valerolactone derivatives. No new metabolite candidates have been found for raspberries, strawberries, blackcurrants, and blackberries. Further studies are encouraged to validate these multimetabolite panels for improving the estimation of berry consumption.
-
6.
Higher bacterial DNAemia can affect the impact of a polyphenol-rich dietary pattern on biomarkers of intestinal permeability and cardiovascular risk in older subjects.
Gargari, G, Taverniti, V, Del Bo', C, Bernardi, S, Hidalgo-Liberona, N, Meroño, T, Andres-Lacueva, C, Kroon, PA, Cherubini, A, Riso, P, et al
European journal of nutrition. 2022;(3):1209-1220
-
-
Free full text
-
Abstract
PURPOSE Aging can be characterized by increased systemic low-grade inflammation, altered gut microbiota composition, and increased intestinal permeability (IP). The intake of polyphenol-rich foods is proposed as a promising strategy to positively affect the gut microbiota-immune system-intestinal barrier (IB) axis. In this context, we tested the hypothesis that a PR-dietary intervention would affect the presence of bacterial factors in the bloodstream of older adults. METHODS We collected blood samples within a randomized, controlled, crossover intervention trial in which older volunteers (n = 51) received a polyphenol-enriched and a control diet. We quantified the presence of bacterial DNA in blood by qPCR targeting the 16S rRNA gene (16S; bacterial DNAemia). Blood DNA was taxonomically profiled via 16S sequencing. RESULTS Higher blood 16S levels were associated with higher BMI and markers of IP, inflammation, and dyslipidemia. PR-intervention did not significantly change bacterial DNAemia in the older population (P = 0.103). Nonetheless, the beneficial changes caused by the polyphenol-enriched diet were greatest in participants with higher bacterial DNAemia, specifically in markers related to IP, inflammation and dyslipidemia, and in fecal bacterial taxa. Finally, we found that the bacterial DNA detected in blood mostly belonged to γ-Proteobacteria, whose abundance significantly decreased after the polyphenol-rich diet in subjects with higher bacterial DNAemia at baseline. CONCLUSIONS This study shows that older subjects with higher bacterial DNAemia experienced a beneficial effect from a polyphenol-rich diet. Bacterial DNAemia may be a further relevant marker for the identification of target populations that could benefit more from a protective dietary treatment. REGISTRATION This trial was retrospectively registered at www.isrctn.org (ISRCTN10214981) on April 28, 2017.
-
7.
Influence of Plasma-Isolated Anthocyanins and Their Metabolites on Cancer Cell Migration (HT-29 and Caco-2) In Vitro: Results of the ATTACH Study.
Behrendt, I, Röder, I, Will, F, Mostafa, H, Gonzalez-Dominguez, R, Meroño, T, Andres-Lacueva, C, Fasshauer, M, Rudloff, S, Kuntz, S
Antioxidants (Basel, Switzerland). 2022;(7)
Abstract
Cancer mortality is mainly due to metastasis. Therefore, searching for new therapeutic agents suppressing cancer cell migration is crucial. Data from human studies regarding effects of anthocyanins on cancer progression, however, are scarce and it is unclear whether physiological concentrations of anthocyanins and their metabolites reduce cancer cell migration in vivo. In addition, interactions with chemotherapeutics like 5-fluorouracil (5-FU) are largely unknown. Thus, we combined a placebo-controlled, double-blinded, cross-over study with in vitro migration studies of colon cancer cell lines to examine the anti-migratory effects of plasma-isolated anthocyanins and their metabolites (PAM). Healthy volunteers (n = 35) daily consumed 0.33 L of an anthocyanin-rich grape/bilberry juice and an anthocyanin-depleted placebo juice for 28 days. PAM were isolated before and after intervention by solid-phase extraction. HT-29 and Caco-2 cells were incubated with PAM in a Boyden chamber. Migration of HT-29 cells was significantly inhibited by PAM from juice but not from placebo. In contrast, Caco-2 migration was not affected. Co-incubation with 5-FU and pooled PAM from volunteers (n = 10), which most effectively inhibited HT-29 migration, further reduced HT-29 migration in comparison to 5-FU alone. Therefore, PAM at physiological concentrations impairs colon cancer cell migration and may support the effectiveness of chemotherapeutics.
-
8.
Apolipoprotein E and sex modulate fatty acid metabolism in a prospective observational study of cognitive decline.
González-Domínguez, R, Castellano-Escuder, P, Lefèvre-Arbogast, S, Low, DY, Du Preez, A, Ruigrok, SR, Lee, H, Helmer, C, Pallàs, M, Urpi-Sarda, M, et al
Alzheimer's research & therapy. 2022;(1):1
Abstract
BACKGROUND Fatty acids play prominent roles in brain function as they participate in structural, metabolic and signaling processes. The homeostasis of fatty acids and related pathways is known to be impaired in cognitive decline and dementia, but the relationship between these metabolic disturbances and common risk factors, namely the ɛ4 allele of the apolipoprotein E (ApoE-ɛ4) gene and sex, remains elusive. METHODS In order to investigate early alterations associated with cognitive decline in the fatty acid-related serum metabolome, we here applied targeted metabolomics analysis on a nested case-control study (N=368), part of a prospective population cohort on dementia. RESULTS When considering the entire study population, circulating levels of free fatty acids, acyl-carnitines and pantothenic acid were found to be increased among those participants who had greater odds of cognitive decline over a 12-year follow-up. Interestingly, stratified analyses indicated that these metabolomic alterations were specific for ApoE-ɛ4 non-carriers and women. CONCLUSIONS Altogether, our results highlight that the regulation of fatty acids and related metabolic pathways during ageing and cognitive decline depends on complex inter-relationships between the ApoE-ε4 genotype and sex. A better understanding of the ApoE-ɛ4 and sex dependent modulation of metabolism is essential to elucidate the individual variability in the onset of cognitive decline, which would help develop personalized therapeutic approaches.
-
9.
A polyphenol-rich dietary pattern improves intestinal permeability, evaluated as serum zonulin levels, in older subjects: The MaPLE randomised controlled trial.
Del Bo', C, Bernardi, S, Cherubini, A, Porrini, M, Gargari, G, Hidalgo-Liberona, N, González-Domínguez, R, Zamora-Ros, R, Peron, G, Marino, M, et al
Clinical nutrition (Edinburgh, Scotland). 2021;(5):3006-3018
-
-
Free full text
-
Abstract
BACKGROUND & AIM: Increased intestinal permeability (IP) can occur in older people and contribute to the activation of the immune system and inflammation. Dietary interventions may represent a potential strategy to reduce IP. In this regard, specific food bioactives such as polyphenols have been proposed as potential IP modulator due to their ability to affect several critical targets and pathways that control IP. The trial aimed to test the hypothesis that a polyphenol-rich dietary pattern can decrease serum zonulin levels, an IP surrogate marker involved in tight junction modulation, and can beneficially alter the intestinal microbiota, and IP-associated biochemical and clinical markers in older subjects. METHODS A randomised, controlled, cross-over intervention trial was performed. Sixty-six subjects (aged ≥ 60 y) with increased IP based on serum zonulin levels, were randomly allocated to one of the two arms of the intervention consisting of a control diet (C-diet) vs. a polyphenol-rich diet (PR-diet). Each intervention was 8-week long and separated by an 8-week wash out period. At the beginning and at the end of each intervention period, serum samples were collected for the quantification of zonulin and other biological markers. Faecal samples were also collected to investigate the intestinal microbial ecosystem. In addition, anthropometrical/physical/biochemical parameters and food intake were evaluated. RESULTS Fifty-one subjects successfully completed the intervention and a high compliance to the dietary protocols was demonstrated. Overall, polyphenol intake significantly increased from a mean of 812 mg/day in the C diet to 1391 mg/day in the PR-diet. Two-way analysis of variance showed a significant effect of treatment (p = 0.008) and treatment × time interaction (p = 0.025) on serum zonulin levels, which decreased after the 8-week PR-diet. In addition, a treatment × time interaction was observed showing a reduction of diastolic blood pressure (p = 0.028) following the PR-diet, which was strongest in those not using antihypertensive drugs. A decrease in both diastolic (p = 0.043) and systolic blood pressure (p = 0.042) was observed in women. Interestingly, a significant increase in fibre-fermenting and butyrate-producing bacteria such as the family Ruminococcaceae and members of the genus Faecalibacterium was observed following the PR intervention. The efficacy of this dietary intervention was greater in subjects with higher serum zonulin at baseline, who showed more pronounced alterations in the markers under study. Furthermore, zonulin reduction was also stronger among subjects with higher body mass index and with insulin resistance at baseline, thus demonstrating the close interplay between IP and metabolic features. CONCLUSIONS These data show, for the first time, that a PR-diet can reduce serum zonulin levels, an indirect marker of IP. In addition, PR-diet reduced blood pressure and increased fibre-fermenting and butyrate-producing bacteria. These findings may represent an initial breakthrough for further intervention studies evaluating possible dietary treatments for the management of IP, inflammation and gut function in different target populations. THIS STUDY WAS REGISTERED AT WWW.ISRCTN. ORG AS ISRCTN10214981.
-
10.
The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer's disease pathology: From antioxidant to epigenetic therapy.
Griñán-Ferré, C, Bellver-Sanchis, A, Izquierdo, V, Corpas, R, Roig-Soriano, J, Chillón, M, Andres-Lacueva, C, Somogyvári, M, Sőti, C, Sanfeliu, C, et al
Ageing research reviews. 2021;:101271
Abstract
While the elderly segment of the population continues growing in importance, neurodegenerative diseases increase exponentially. Lifestyle factors such as nutrition, exercise, and education, among others, influence ageing progression, throughout life. Notably, the Central Nervous System (CNS) can benefit from nutritional strategies and dietary interventions that prevent signs of senescence, such as cognitive decline or neurodegenerative diseases such as Alzheimer's disease and Parkinson's Disease. The dietary polyphenol Resveratrol (RV) possesses antioxidant and cytoprotective effects, producing neuroprotection in several organisms. The oxidative stress (OS) occurs because of Reactive oxygen species (ROS) accumulation that has been proposed to explain the cause of the ageing. One of the most harmful effects of ROS in the cell is DNA damage. Nevertheless, there is also evidence demonstrating that OS can produce other molecular changes such as mitochondrial dysfunction, inflammation, apoptosis, and epigenetic modifications, among others. Interestingly, the dietary polyphenol RV is a potent antioxidant and possesses pleiotropic actions, exerting its activity through various molecular pathways. In addition, recent evidence has shown that RV mediates epigenetic changes involved in ageing and the function of the CNS that persists across generations. Furthermore, it has been demonstrated that RV interacts with gut microbiota, showing modifications in bacterial composition associated with beneficial effects. In this review, we give a comprehensive overview of the main mechanisms of action of RV in different experimental models, including clinical trials and discuss how the interconnection of these molecular events could explain the neuroprotective effects induced by RV.