1.
Optimal Pair Matching Combined with Machine Learning Predicts a Significant Reduction in Myocardial Infarction Risk in African Americans Following Omega-3 Fatty Acid Supplementation.
Sun, S, Hara, A, Johnstone, L, Hallmark, B, Watkins, JC, Thomson, CA, Schembre, SM, Sergeant, S, Umans, JG, Yao, G, et al
Nutrients. 2024;(17)
Abstract
Conflicting clinical trial results on omega-3 highly unsaturated fatty acids (n-3 HUFA) have prompted uncertainty about their cardioprotective effects. While the VITAL trial found no overall cardiovascular benefit from n-3 HUFA supplementation, its substantial African American (AfAm) enrollment provided a unique opportunity to explore racial differences in response to n-3 HUFA supplementation. The current observational study aimed to simulate randomized clinical trial (RCT) conditions by matching 3766 AfAm and 15,553 non-Hispanic White (NHW) individuals from the VITAL trial utilizing propensity score matching to address the limitations related to differences in confounding variables between the two groups. Within matched groups (3766 AfAm and 3766 NHW), n-3 HUFA supplementation's impact on myocardial infarction (MI), stroke, and cardiovascular disease (CVD) mortality was assessed. A weighted decision tree analysis revealed belonging to the n-3 supplementation group as the most significant predictor of MI among AfAm but not NHW. Further logistic regression using the LASSO method and bootstrap estimation of standard errors indicated n-3 supplementation significantly lowered MI risk in AfAm (OR 0.17, 95% CI [0.048, 0.60]), with no such effect in NHW. This study underscores the critical need for future RCT to explore racial disparities in MI risk associated with n-3 HUFA supplementation and highlights potential causal differences between supplementation health outcomes in AfAm versus NHW populations.
2.
Identification of an Allele-Specific Transcription Factor Binding Interaction that May Regulate PLA2G2A Gene Expression.
Hara, A, Lu, E, Johnstone, L, Wei, M, Sun, S, Hallmark, B, Watkins, JC, Zhang, HH, Yao, G, Chilton, FH
Bioinformatics and biology insights. 2024;:11779322241261427
Abstract
The secreted phospholipase A2 (sPLA2) isoform, sPLA2-IIA, has been implicated in a variety of diseases and conditions, including bacteremia, cardiovascular disease, COVID-19, sepsis, adult respiratory distress syndrome, and certain cancers. Given its significant role in these conditions, understanding the regulatory mechanisms impacting its levels is crucial. Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs), including rs11573156, that are associated with circulating levels of sPLA2-IIA. The work in the manuscript leveraged 4 publicly available datasets to investigate the mechanism by which rs11573156 influences sPLA2-IIA levels via bioinformatics and modeling analysis. Through genotype-tissue expression (GTEx), 234 expression quantitative trait loci (eQTLs) were identified for the gene that encodes for sPLA2-IIA, PLA2G2A. SNP2TFBS was used to ascertain the binding affinities between transcription factors (TFs) to both the reference and alternative alleles of identified eQTL SNPs. Subsequently, candidate TF-SNP interactions were cross-referenced with the ChIP-seq results in matched tissues from ENCODE. SP1-rs11573156 emerged as the significant TF-SNP pair in the liver. Further analysis revealed that the upregulation of PLA2G2A transcript levels through the rs11573156 variant was likely affected by tissue SP1 protein levels. Using an ordinary differential equation based on Michaelis-Menten kinetic assumptions, we modeled the dependence of PLA2G2A transcription on SP1 protein levels, incorporating the SNP influence. Collectively, our analysis strongly suggests that the difference in the binding dynamics of SP1 to different rs11573156 alleles may underlie the allele-specific PLA2G2A expression in different tissues, a mechanistic model that awaits future direct experimental validation. This mechanism likely contributes to the variation in circulating sPLA2-IIA protein levels in the human population, with implications for a wide range of human diseases.