-
1.
Novel insights into adipose tissue heterogeneity.
Wang, T, Sharma, AK, Wolfrum, C
Reviews in endocrine & metabolic disorders. 2022;(1):5-12
-
-
Free full text
-
Abstract
When normalized to volume, adipose tissue is comprised mainly of large lipid metabolizing and storing cells called adipocytes. Strikingly, the numerical representation of non-adipocytes, composed of a wide variety of cell types found in the so-called stromal vascular fraction (SVF), outnumber adipocytes by far. Besides its function in energy storage, adipose tissue has emerged as a versatile organ that regulates systemic metabolism and has therefore constituted an attractive target for the treatment of metabolic diseases. Recent high-resolution single cells/nucleus RNA seq data exemplify an intriguingly profound diversity of both adipocytes and SVF cells in all adipose depots, and the current data, while limited, demonstrate the significance of the intra-tissue cell composition in shaping the overall functionality of this tissue. Due to the complexity of adipose tissue, our understanding of the biological relevance of this heterogeneity and plasticity is fractional. Therefore, establishing atlases of adipose tissue cell heterogeneity is the first step towards generating an understanding of these functionalities. In this review, we will describe the current knowledge on adipose tissue cell composition and the heterogeneity of single-cell RNA sequencing, including the technical limitations.
-
2.
Sexual dimorphism in COVID-19: potential clinical and public health implications.
Bechmann, N, Barthel, A, Schedl, A, Herzig, S, Varga, Z, Gebhard, C, Mayr, M, Hantel, C, Beuschlein, F, Wolfrum, C, et al
The lancet. Diabetes & endocrinology. 2022;(3):221-230
-
-
Free full text
-
Abstract
Current evidence suggests that severity and mortality of COVID-19 is higher in men than in women, whereas women might be at increased risk of COVID-19 reinfection and development of long COVID. Differences between sexes have been observed in other infectious diseases and in the response to vaccines. Sex-specific expression patterns of proteins mediating virus binding and entry, and divergent reactions of the immune and endocrine system, in particular the hypothalamic-pituitary-adrenal axis, in response to acute stress might explain the higher severity of COVID-19 in men. In this Personal View, we discuss how sex hormones, comorbidities, and the sex chromosome complement influence these mechanisms in the context of COVID-19. Due to its role in the severity and progression of SARS-CoV-2 infections, we argue that sexual dimorphism has potential implications for disease treatment, public health measures, and follow-up of patients predisposed to the development of long COVID. We suggest that sex differences could be considered in future pandemic surveillance and treatment of patients with COVID-19 to help to achieve better disease stratification and improved outcomes.
-
3.
Plasticity and heterogeneity of thermogenic adipose tissue.
Sun, W, Modica, S, Dong, H, Wolfrum, C
Nature metabolism. 2021;(6):751-761
Abstract
The perception of adipose tissue, both in the scientific community and in the general population, has changed dramatically in the past 20 years. While adipose tissue was thought for a long time to be a rather simple lipid storage entity, it is now recognized as a highly heterogeneous organ and a critical regulator of systemic metabolism, composed of many different subtypes of cells, with important endocrine functions. Additionally, adipose tissue is nowadays recognized to contribute to energy turnover, due to the presence of specialized thermogenic adipocytes, which can be found in many adipose depots. This review discusses the unprecedented insights that we have gained into the heterogeneity of thermogenic adipocytes and their respective precursors due to the technical developments in single-cell and nucleus technologies. These methodological advances have increased our understanding of how adipose tissue catabolic function is influenced by developmental and intercellular communication events.
-
4.
Metabolomic Analysis Reveals Changes in Plasma Metabolites in Response to Acute Cold Stress and Their Relationships to Metabolic Health in Cold-Acclimatized Humans.
Kovaničová, Z, Karhánek, M, Kurdiová, T, Baláž, M, Wolfrum, C, Ukropcová, B, Ukropec, J
Metabolites. 2021;(9)
Abstract
Cold exposure results in activation of metabolic processes required for fueling thermogenesis, potentially promoting improved metabolic health. However, the metabolic complexity underlying this process is not completely understood. We aimed to analyze changes in plasma metabolites related to acute cold exposure and their relationship to cold-acclimatization level and metabolic health in cold-acclimatized humans. Blood samples were obtained before and acutely after 10-15 min of ice-water swimming (<5 °C) from 14 ice-water swimmers. Using mass spectrometry, 973 plasma metabolites were measured. Ice-water swimming induced acute changes in 70 metabolites. Pathways related to amino acid metabolism were the most cold-affected and cold-induced changes in several amino acids correlated with cold-acclimatization level and/or metabolic health markers, including atherogenic lipid profile or insulin resistance. Metabolites correlating with cold-acclimatization level were enriched in the linoleic/α-linolenic acid metabolic pathway. N-lactoyl-tryptophan correlated with both cold-acclimatization level and cold-induced changes in thyroid and parathyroid hormones. Acute cold stress in cold-acclimatized humans induces changes in plasma metabolome that involve amino acids metabolism, while the linoleic and α-linolenic acid metabolism pathway seems to be affected by regular cold exposure. Metabolites related to metabolic health, thermogenic hormonal regulators and acclimatization level might represent prospective molecular factors important in metabolic adaptations to regular cold exposure.
-
5.
GPR3 sets brown fat on fire.
Balaz, M, Wolfrum, C
Cell metabolism. 2021;(7):1271-1273
Abstract
Activation of thermogenic adipocytes, a process canonically driven by norepinephrine through β-adrenergic receptors, presents an appealing therapeutic approach to combat obesity. Recent work by Sveidahl Johansen et al., 2021 published in Cell has identified a noncanonical mechanism of brown adipocyte activation, in which lipolysis transcriptionally drives the constitutive activation of the Gs protein-coupled receptor, GPR3, to induce thermogenesis.
-
6.
Fluvastatin Reduces Glucose Tolerance in Healthy Young Individuals Independently of Cold Induced BAT Activity.
Felder, M, Maushart, CI, Gashi, G, Senn, JR, Becker, AS, Müller, J, Balaz, M, Wolfrum, C, Burger, IA, Betz, MJ
Frontiers in endocrinology. 2021;:765807
Abstract
BACKGROUND Statins are commonly prescribed for primary and secondary prevention of atherosclerotic disease. They reduce cholesterol biosynthesis by inhibiting hydroxymethylglutaryl-coenzyme A-reductase (HMG-CoA-reductase) and therefore mevalonate synthesis. Several studies reported a small, but significant increase in the diagnosis of diabetes mellitus with statin treatment. The molecular mechanisms behind this adverse effect are not yet fully understood. Brown adipose tissue (BAT), which plays a role in thermogenesis, has been associated with a reduced risk of insulin resistance. Statins inhibit adipose tissue browning and have been negatively linked to the presence of BAT in humans. We therefore speculated that inhibition of BAT by statins contributes to increased insulin resistance in humans. METHODS A prospective study was conducted in 17 young, healthy men. After screening whether significant cold-induced thermogenesis (CIT) was present, participants underwent glucose tolerance testing (oGTT) and assessment of BAT activity by FDG-PET/MRI after cold-exposure and treatment with a β3-agonist. Fluvastatin 2x40mg per day was then administered for two weeks and oGTT and FDG-PET/MRI were repeated. RESULTS Two weeks of fluvastatin treatment led to a significant increase in glucose area under the curve (AUC) during oGTT (p=0.02), reduction in total cholesterol and LDL cholesterol (both p<0.0001). Insulin AUC (p=0.26), resting energy expenditure (REE) (p=0.44) and diet induced thermogenesis (DIT) (p=0.27) did not change significantly. The Matsuda index, as an indicator of insulin sensitivity, was lower after fluvastatin intake, but the difference was not statistically significant (p=0.09). As parameters of BAT activity, mean standard uptake value (SUVmean) (p=0.12), volume (p=0.49) and total glycolysis (p=0.74) did not change significantly during the intervention. Matsuda index, was inversely related to SUVmean and the respiratory exchange ratio (RER) (both R2 = 0.44, p=0.005) at baseline, but not after administration of fluvastatin (R2 = 0.08, p=0.29, and R2 = 0.14, p=0.16, respectively). CONCLUSIONS Treatment with fluvastatin for two weeks reduced serum lipid levels but increased glucose AUC in young, healthy men, indicating reduced glucose tolerance. This was not associated with changes in cold-induced BAT activity.
-
7.
Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism.
Scheele, C, Wolfrum, C
Endocrine reviews. 2020;41(1)
-
-
-
Free full text
-
Plain language summary
Brown adipose tissue (BAT) is an important contributor to the regulation of metabolism via cellular communication with organs such as liver, muscle, gut and central nervous system. BAT is important for heat generation and is at high levels in human infants. Levels of activation of BAT decline as we age and it has been shown that the amount of BAT is smaller and its activity reduced in those with obesity and type 2 diabetes. To date, there is no answer to efficiently restore functional BAT in aging and obese subjects. This review looks at experiments done on the factors secreted from active BAT (batokines). The review aims to provide a structure for the processes and cell types involved in BAT and the recent findings of BAT whole-body communication are discussed. Altogether, these findings demonstrate that BAT has an adaptive capacity. Studying batokines, offers an alternative approach to identify novel drug targets for metabolic regulation.
Abstract
Infants rely on brown adipose tissue (BAT) as a primary source of thermogenesis. In some adult humans, residuals of brown adipose tissue are adjacent to the central nervous system and acute activation increases metabolic rate. Brown adipose tissue (BAT) recruitment occurs during cold acclimation and includes secretion of factors, known as batokines, which target several different cell types within BAT, and promote adipogenesis, angiogenesis, immune cell interactions, and neurite outgrowth. All these processes seem to act in concert to promote an adapted BAT. Recent studies have also provided exciting data on whole body metabolic regulation with a broad spectrum of mechanisms involving BAT crosstalk with liver, skeletal muscle, and gut as well as the central nervous system. These widespread interactions might reflect the property of BAT of switching between an active thermogenic state where energy is highly consumed and drained from the circulation, and the passive thermoneutral state, where energy consumption is turned off. (Endocrine Reviews 41: XXX - XXX, 2020).
-
8.
Cold Exposure Distinctively Modulates Parathyroid and Thyroid Hormones in Cold-Acclimatized and Non-Acclimatized Humans.
Kovaničová, Z, Kurdiová, T, Baláž, M, Štefanička, P, Varga, L, Kulterer, OC, Betz, MJ, Haug, AR, Burger, IA, Kiefer, FW, et al
Endocrinology. 2020;(7)
Abstract
Cold-induced activation of thermogenesis modulates energy metabolism, but the role of humoral mediators is not completely understood. We aimed to investigate the role of parathyroid and thyroid hormones in acute and adaptive response to cold in humans. Examinations were performed before/after 15 minutes of ice-water swimming (n = 15) or 120 to 150 minutes of cold-induced nonshivering thermogenesis (NST) applied to cold-acclimatized (n = 6) or non-acclimatized (n = 11) individuals. Deep-neck brown adipose tissue (BAT) was collected from non-acclimatized patients undergoing elective neck surgery (n = 36). Seasonal variations in metabolic/hormonal parameters of ice-water swimmers were evaluated. We found that in ice-water swimmers, PTH and TSH increased and free T3, T4 decreased after a 15-minute winter swim, whereas NST-inducing cold exposure failed to regulate PTH and free T4 and lowered TSH and free T3. Ice-water swimming-induced increase in PTH correlated negatively with systemic calcium and positively with phosphorus. In non-acclimatized men, NST-inducing cold decreased PTH and TSH. Positive correlation between systemic levels of PTH and whole-body metabolic preference for lipids as well as BAT volume was found across the 2 populations. Moreover, NST-cooling protocol-induced changes in metabolic preference for lipids correlated positively with changes in PTH. Finally, variability in circulating PTH correlated positively with UCP1/UCP1, PPARGC1A, and DIO2 in BAT from neck surgery patients. Our data suggest that regulation of PTH and thyroid hormones during cold exposure in humans varies by cold acclimatization level and/or cold stimulus intensity. Possible role of PTH in NST is indicated by its positive relationships with whole-body metabolic preference for lipids, BAT volume, and UCP1 content.
-
9.
Hemostasis, endothelial stress, inflammation, and the metabolic syndrome.
Grandl, G, Wolfrum, C
Seminars in immunopathology. 2018;40(2):215-224
-
-
-
Free full text
-
Plain language summary
The metabolic syndrome consists of several factors that significantly increase the risk of developing type 2 diabetes, cardiovascular disease and all-cause mortality. Underlying these conditions is a complex interaction between the immune response, blood glucose levels, blood lipid levels and both local and systemic inflammation. The purpose of this review is to provide an overview of various aspects of pathophysiology in metabolic syndrome and obesity through the lens of the western diet. According to the existing research, the authors conclude that both type 2 diabetes and cardiovascular disease should be viewed as an inflammatory disease and further suggest inflammation and insulin resistance are linked to chronic consumption of a western diet.
Abstract
Obesity and the metabolic syndrome (MS) are two of the pressing healthcare problems of our time. The MS is defined as increased abdominal obesity in concert with elevated fasting glucose levels, insulin resistance, elevated blood pressure, and plasma lipids. It is a key risk factor for type 2 diabetes mellitus (T2DM) and for cardiovascular complications and mortality. Here, we review work demonstrating that various aspects of coagulation and hemostasis, as well as vascular reactivity and function, become impaired progressively during chronic ingestion of a western diet, but also acutely after meals. We outline that both T2DM and cardiovascular disease should be viewed as inflammatory diseases and describe that chronic overload of free fatty acids and glucose can trigger inflammatory pathways directly or via increased production of ROS. We propose that since endothelial stress and increases in platelet activity precede inflammation and overt symptoms of the MS, they are likely the first hit. This suggests that endothelial activation and insulin resistance are probably causative in the observed chronic low-level metabolic inflammation, and thus both metabolic and cardiovascular complications linked to consumption of a western diet.
-
10.
Proteomic Analysis of Human Brown Adipose Tissue Reveals Utilization of Coupled and Uncoupled Energy Expenditure Pathways.
Müller, S, Balaz, M, Stefanicka, P, Varga, L, Amri, EZ, Ukropec, J, Wollscheid, B, Wolfrum, C
Scientific reports. 2016;:30030
Abstract
Human brown adipose tissue (BAT) has become an attractive target to combat the current epidemical spread of obesity and its associated co-morbidities. Currently, information on its functional role is primarily derived from rodent studies. Here, we present the first comparative proteotype analysis of primary human brown adipose tissue versus adjacent white adipose tissue, which reveals significant quantitative differences in protein abundances and in turn differential functional capabilities. The majority of the 318 proteins with increased abundance in BAT are associated with mitochondrial metabolism and confirm the increased oxidative capacity. In addition to uncoupling protein 1 (UCP1), the main functional effector for uncoupled respiration, we also detected the mitochondrial creatine kinases (CKMT1A/B, CKMT2), as effective modulators of ATP synthase coupled respiration, to be exclusively expressed in BAT. The abundant expression and utilization of both energy expenditure pathways in parallel highlights the complex functional involvement of BAT in human physiology.