0
selected
-
1.
Dissecting the interaction between COVID-19 and diabetes mellitus.
Chee, YJ, Tan, SK, Yeoh, E
Journal of diabetes investigation. 2020;11(5):1104-1114
-
-
-
Free full text
Plain language summary
Several countries have reported higher death rates and more severe cases of covid-19 amongst individuals with chronic diseases such as type 2 diabetes. This review of 100 papers aimed to investigate the interconnecting factors which may contribute to poorer prognosis in individuals with covid-19 and type 2 diabetes. Although the evidence suggests that patients with type 2 diabetes have poorer outcomes after contracting covid-19, they are not more susceptible to infection. The paper reported that mechanisms which may increase severity in type 2 diabetics are abnormal immune function, increased susceptibility to inflammation, the increased adherence of the virus to target cells and reduced ability to fight infection. It is important to manage blood sugars when suffering from covid-19. The paper reviewed the use of several medications such as metformin, dipeptidyl peptidase-4 inhibitors (DPP4), glucagon-like peptide-1 agonists and insulin in the context of individuals suffering from covid-19, with insulin being the treatment of choice in the acutely ill patient. Current treatments of covid-19 were also reviewed such as chloroquine and hydroxychloroquine, Lopinavir-ritonavir, IL-6 receptor agonists, type 1 interferon and remdesivir. It was concluded that clinicians should be aware of the risks in patients with type 2 diabetes and covid-19. However as new data is made available, the chronic and long-term implications will become clearer. This study could be used by health care professionals to ensure that patients with type 2 diabetes do everything they can to avoid covid-19 infection and that if contracted these patients are closely monitored for severe disease.
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic that is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus-2. Data from several countries have shown higher morbidity and mortality among individuals with chronic metabolic diseases, such as diabetes mellitus. In this review, we explore the contributing factors for poorer prognosis in these individuals. As a significant proportion of patients with COVID-19 also have diabetes mellitus, this adds another layer of complexity to their management. We explore potential interactions between antidiabetic medications and renin-angiotensin-aldosterone system inhibitors with COVID-19. Suggested recommendations for the use of antidiabetic medications for COVID-19 patients with diabetes mellitus are provided. We also review pertinent clinical considerations in the management of diabetic ketoacidosis in COVID-19 patients. In addition, we aim to increase clinicians' awareness of the metabolic effects of promising drug therapies for COVID-19. Finally, we highlight the importance of timely vaccinations for patients with diabetes mellitus.
-
2.
The Long Haul of COVID-19 Recovery: Immune Rejuvenation versus Immune Support.
Bland, JS
Integrative medicine (Encinitas, Calif.). 2020;19(6):18-22
-
-
-
Free full text
Plain language summary
Following Covid-19 infection, sufferers have reported various residual symptoms, which have been likened to those experienced by chronic fatigue sufferers and those with Gulf War syndrome. This review paper aimed to assess whether the body has a similar immune response to these diseases during Covid-19, and if so, what therapies could be used. It also reviewed any diet and lifestyle factors that may be affecting the immune response. The paper stated that Covid-19 infection is associated with inflammation, which can damage immune cells and inflammation prior to Covid-19 infection may contribute to severity of the infection. Prior research in seemingly healthy individuals indicates that environment, diet, and lifestyle factors can all contribute to differing “immune identities” and eliminating immune cells which carry the imprint of memories should be a therapy focus in Covid-19 patients. Fasting, diets low in refined sugars and high in omega-3 and plant chemicals were discussed as ways for the body to clear out immune cells. It was concluded that personalising therapy strategies based on an individual’s immune identity to reduce inflammation could ultimately support the immune system. This paper could be used by healthcare professionals to understand the importance of diet and lifestyle changes to reduce inflammation and support the immune system.
Abstract
With the COVID-19 pandemic still affecting communities all over the world and "Long Haul" chronic health issues emerging, it is time for us to look back at past multi-symptom health conditions that required a different approach to their treatment, beyond just managing symptoms. It is important for us to consider how to apply what we have learned about immune rejuvenation and its impact on conditions associated with chronic immune dysfunction. We know more than we ever have before about how to reduce chronic inflammation at its source through the support of selective immune cell autophagy/mitophagy and improved immune cell mitochondrial activity, followed by remodeling of the immune epigenome, and-ultimately-a reset of immune function.
-
3.
The Effects of Vegetarian and Vegan Diets on Gut Microbiota.
Tomova, A, Bukovsky, I, Rembert, E, Yonas, W, Alwarith, J, Barnard, ND, Kahleova, H
Frontiers in nutrition. 2019;6:47
-
-
-
Free full text
Plain language summary
The difference in gut microbiota composition between individuals following vegan or vegetarian diets and those following omnivorous diets is well documented. A plant-based diet appears to be beneficial for human health by promoting the development of more diverse and stable microbial systems. This diversity appears to have an important association with BMI, obesity, and arterial compliance. This review highlights the effects of different diets, particularly plant-based diets, on the gut microbiota composition and production of microbial metabolites affecting the host health. The ratio between Bacteroidetes and Firmicutes is discussed and how different diets can change it. It explains how diet can affect the three main enterotypes: Prevotella, Bacteroides, and Ruminococcus. The food components proteins, carbohydrates, fats and polyphenols are discussed and how they influence gut microbiota. Up to date knowledge suggests that a plant-based diet may be an effective way to promote a diverse ecosystem of beneficial microbes that support overall health. However, due to the complexity and inter-individual differences, further research is required to fully characterize the interactions between diet, the microbiome, and health outcomes.
Abstract
The difference in gut microbiota composition between individuals following vegan or vegetarian diets and those following omnivorous diets is well documented. A plant-based diet appears to be beneficial for human health by promoting the development of more diverse and stable microbial systems. Additionally, vegans and vegetarians have significantly higher counts of certain Bacteroidetes-related operational taxonomic units compared to omnivores. Fibers (that is, non-digestible carbohydrates, found exclusively in plants) most consistently increase lactic acid bacteria, such as Ruminococcus, E. rectale, and Roseburia, and reduce Clostridium and Enterococcus species. Polyphenols, also abundant in plant foods, increase Bifidobacterium and Lactobacillus, which provide anti-pathogenic and anti-inflammatory effects and cardiovascular protection. High fiber intake also encourages the growth of species that ferment fiber into metabolites as short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate. The positive health effects of SCFAs are myriad, including improved immunity against pathogens, blood-brain barrier integrity, provision of energy substrates, and regulation of critical functions of the intestine. In conclusion, the available literature suggests that a vegetarian/vegan diet is effective in promoting a diverse ecosystem of beneficial bacteria to support both human gut microbiome and overall health. This review will focus on effects of different diets and nutrient contents, particularly plant-based diets, on the gut microbiota composition and production of microbial metabolites affecting the host health.
-
4.
A Review of Dietary (Phyto)Nutrients for Glutathione Support.
Minich, DM, Brown, BI
Nutrients. 2019;11(9)
-
-
-
Free full text
Plain language summary
Glutathione is made up of 3 amino acids (cysteine, glutamic acid and glycine) and plays important roles in the body, including oxidative stress reduction, supporting the immune system and contributing to detoxification processes. Evidence suggests that it is an important marker and target for treatment in many chronic, age-related diseases. This review article explores the evidence of nutritional strategies to improve glutathione status. The authors examine the evidence for supplementation of the precursors of glutathione as well as with various forms of supplemental glutathione itself, and the impacts on glutathione status and clinical impacts. Crucially, the review article provides information on dietary sources of precursors of glutathione and glutathione itself, which will provide Nutrition Practitioners with compelling information for use in clinic. Lean protein, brassica vegetables, polyphenol-rich fruits and vegetables, green tea, herbs and spices and omega-3 rich foods are all discussed in detail.
Abstract
Glutathione is a tripeptide that plays a pivotal role in critical physiological processes resulting in effects relevant to diverse disease pathophysiology such as maintenance of redox balance, reduction of oxidative stress, enhancement of metabolic detoxification, and regulation of immune system function. The diverse roles of glutathione in physiology are relevant to a considerable body of evidence suggesting that glutathione status may be an important biomarker and treatment target in various chronic, age-related diseases. Yet, proper personalized balance in the individual is key as well as a better understanding of antioxidants and redox balance. Optimizing glutathione levels has been proposed as a strategy for health promotion and disease prevention, although clear, causal relationships between glutathione status and disease risk or treatment remain to be clarified. Nonetheless, human clinical research suggests that nutritional interventions, including amino acids, vitamins, minerals, phytochemicals, and foods can have important effects on circulating glutathione which may translate to clinical benefit. Importantly, genetic variation is a modifier of glutathione status and influences response to nutritional factors that impact glutathione levels. This narrative review explores clinical evidence for nutritional strategies that could be used to improve glutathione status.
-
5.
Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis.
Jutras, BL, Lochhead, RB, Kloos, ZA, Biboy, J, Strle, K, Booth, CJ, Govers, SK, Gray, J, Schumann, P, Vollmer, W, et al
Proceedings of the National Academy of Sciences of the United States of America. 2019;116(27):13498-13507
-
-
-
Free full text
Plain language summary
Lyme disease is a varied, multisystem disorder caused by the spiral-shaped bacteria Borrelia burgdorferi (Bb). Advanced stages of the disease can present with oligoarthritis, most commonly involving the knee joints. Peptidoglycan (PG) is a compound that makes up the cell envelope of Bb and other bacteria. It acts as a microbe-associated molecular pattern, which can trigger the immune system and induces pro-inflammatory responses. This article summarises a series of cell, human, and animal studies supporting the theory that PG is a contributor to persistent Lyme’s arthritis (LA) far beyond the eradication of the pathogen. Significantly elevated inflammatory markers as well as antibodies to PG and Bb itself have been found in patients with LA before and after antibiotic therapy. The inflammatory response to Bb PG seems to be particularly high when compared to other bacteria. In summary, the authors suggest that PG accumulation in the joints and subsequent persistent inflammation contribute to LA and that targeting the specific inflammatory pathways involved may yield potential therapeutic interventions. This article could be of interest to those looking to understand more about the mechanisms and specific inflammatory responses involved in LA.
Abstract
Lyme disease is a multisystem disorder caused by the spirochete Borrelia burgdorferi A common late-stage complication of this disease is oligoarticular arthritis, often involving the knee. In ∼10% of cases, arthritis persists after appropriate antibiotic treatment, leading to a proliferative synovitis typical of chronic inflammatory arthritides. Here, we provide evidence that peptidoglycan (PG), a major component of the B. burgdorferi cell envelope, may contribute to the development and persistence of Lyme arthritis (LA). We show that B. burgdorferi has a chemically atypical PG (PGBb) that is not recycled during cell-wall turnover. Instead, this pathogen sheds PGBb fragments into its environment during growth. Patients with LA mount a specific immunoglobulin G response against PGBb, which is significantly higher in the synovial fluid than in the serum of the same patient. We also detect PGBb in 94% of synovial fluid samples (32 of 34) from patients with LA, many of whom had undergone oral and intravenous antibiotic treatment. These same synovial fluid samples contain proinflammatory cytokines, similar to those produced by human peripheral blood mononuclear cells stimulated with PGBb In addition, systemic administration of PGBb in BALB/c mice elicits acute arthritis. Altogether, our study identifies PGBb as a likely contributor to inflammatory responses in LA. Persistence of this antigen in the joint may contribute to synovitis after antibiotics eradicate the pathogen. Furthermore, our finding that B. burgdorferi sheds immunogenic PGBb fragments during growth suggests a potential role for PGBb in the immunopathogenesis of other Lyme disease manifestations.
-
6.
Navy Beans Impact the Stool Metabolome and Metabolic Pathways for Colon Health in Cancer Survivors.
Baxter, BA, Oppel, RC, Ryan, EP
Nutrients. 2018;11(1)
-
-
-
Free full text
Plain language summary
Colorectal cancer (CRC) is one of the leading cause of cancer-related death around the world. Emerging evidence supports that increased consumption of pulses / legumes, such as navy beans, can reduce risk. Consuming navy beans as part of one's diet has been previously shown to positively affect the relationship between a person's gut bacteria and their health status. This study looked at stool samples to assess the impact of navy bean consumption on health based on the by-products of metabolism generated by gut bacteria (metabolites). The study was a 4-week, randomised-controlled trial with overweight and obese CRC survivors and involved consumption of 1 meal and 1 snack daily. People in the intervention group ate 35g of cooked navy bean daily whereas those in the control group had 0g of navy beans. From amongst the hundreds of metabolites identified in both groups, there was a 5-fold increase in ophthalmate for navy bean consumers, which can indicate an increase in glutathione. Glutathione is an antioxidant and detoxifying substance produced in the human liver. It is involved in cancer control mechanisms such as detoxification of xenobiotics (toxins), antioxidant defense, proliferation, and apoptosis. Other interesting results include the metabolism of the amino acid lysine, which supports health immune function, and an increase in plant-based nutrients or phytochemicals in those who consumed navy bean vs the control group. These results are indicative of an acute response to increased navy bean intake, which merit further investigation for improving colonic health after long-term consumption.
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the United States and emerging evidence supports that increased consumption of legumes, such as navy beans, can reduce risk. Navy bean consumption was previously shown to modulate host and microbiome metabolism, and this investigation was performed to assess the impact on the human stool metabolome, which includes the presence of navy bean metabolites. This 4-week, randomized-controlled trial with overweight and obese CRC survivors involved consumption of 1 meal and 1 snack daily. The intervention contained 35 g of cooked navy bean or macronutrient matched meals and snacks with 0 g of navy beans for the control group (n = 18). There were 30 statistically significant metabolite differences in the stool of participants that consumed navy bean at day 28 compared to the participants' baseline (p ≤ 0.05) and 26 significantly different metabolites when compared to the control group. Of the 560 total metabolites identified from the cooked navy beans, there were 237 possible navy bean-derived metabolites that were identified in the stool of participants consuming navy beans, such as N-methylpipecolate, 2-aminoadipate, piperidine, and vanillate. The microbial metabolism of amino acids and fatty acids were also identified in stool after 4 weeks of navy bean intake including cadaverine, hydantoin-5 propionic acid, 4-hydroxyphenylacetate, and caprylate. The stool relative abundance of ophthalmate increased 5.25-fold for navy bean consumers that can indicate glutathione regulation, and involving cancer control mechanisms such as detoxification of xenobiotics, antioxidant defense, proliferation, and apoptosis. Metabolic pathways involving lysine, and phytochemicals were also modulated by navy bean intake in CRC survivors. These metabolites and metabolic pathways represent an acute response to increased navy bean intake, which merit further investigation for improving colonic health after long-term consumption.
-
7.
Sourdough Fermentation Favorably Influences Selenium Biotransformation and the Biological Effects of Flatbread.
Di Nunzio, M, Bordoni, A, Aureli, F, Cubadda, F, Gianotti, A
Nutrients. 2018;10(12)
-
-
-
Free full text
Plain language summary
Selenium (Se) is a soil-based trace element essential for immune system functionality, hormone regulation and muscular metabolism, however several regions in the world are deficient in Se. The current approach to this global health issue is fortification with Se-enriched flour, but this comes with its trials due to a small range between deficiency and toxicity. The primary aim of this study was to identify whether sourdough fermentation increases the bioavailability of Se in a typical flatbread. Flatbreads were prepared with either control wheat flour or inorganic Se-enriched wheat flour, and both were subject to conventional and sourdough fermentation. The variations were submitted to in vitro simulation human digestion and the biological effect of products were tested using cultured liver cells. This study found the use of Se-enriched flour significantly increased Se content of the flatbread. Sourdough fermentation, compared with conventional fermentation, led to a major conversion of inorganic Se present in the flour into the organic species, which is significantly more available for absorption. Based on these results, the authors conclude sourdough fermentation is a strategy that should be utilised to improve Se deficiency throughout the world.
Abstract
Although selenium is of great importance for the human body, in several world regions the intake of this essential trace element does not meet the dietary reference values. To achieve optimal intake, fortification of bread by using selenium-enriched flour has been put forward. Less is known on the potential effect of sourdough fermentation, which might be worth exploring as the biological effects of selenium strongly depend on its chemical form and sourdough fermentation is known to cause transformations of nutrients and phytochemicals, including the conversion of inorganic selenium into organic selenocompounds. Here we investigated the bio transformation of selenium by sourdough fermentation in a typical Italian flatbread (piadina) made with standard (control) or selenium-enriched flour. The different piadina were submitted to in vitro digestion, and the biological activity of the resulting hydrolysates was tested by means of cultured human liver cells exposed to an exogenous oxidative stress. The use of selenium-enriched flour and sourdough fermentation increased the total content of bioaccessible selenium in organic form, compared to conventional fermentation, and led to protective effects counteracting oxidative damage in cultured cells. The present study suggests that selenium-rich, sourdough-fermented bakery products show promise for improving human selenium nutrition whenever necessary.