-
1.
Melatonin: Roles in influenza, Covid-19, and other viral infections.
Anderson, G, Reiter, RJ
Reviews in medical virology. 2020;30(3):e2109
-
-
-
Free full text
-
Plain language summary
Viruses like influenza and coronaviruses change quickly, making it challenging to develop effective treatments and vaccines in a short time frame. Consequently, the use of generic substances that limit viral effects are of high interest. In this paper, the authors summarize a range of mechanisms in which melatonin can alter the impact of virus infections and infection-associated inflammatory overdrive aka cytokine storm. Melatonin, the sleep hormone, is well known for its potent antioxidant and anti-inflammatory action. It seems highly likely that melatonin can modulate the cellular function of all cells, mostly via mitochondrial function. This is particularly relevant in immune cells. For example, the daytime variance in immune function seems to be closely linked with mitochondrial activity and energy production. Other relevant mechanisms described are the antiviral role of melatonin-induced sirtuins - proteins that regulate cellular health-, the impact of viruses on cell coordinating microRNA, the role of the gut microbiome and gut permeability, as well as sympathetic nervous system activation and the protective effects of parasympathetic activation. Also considered are pre-existing health conditions and conditions that are linked with a decline in melatonin along with ageing, all being groups in which severity of viral infections is felt. This paper may be of interest to those who like to explore in more depth the mechanisms behind melatonin and its ability to influence viral disease progression.
Abstract
There is a growing appreciation that the regulation of the melatonergic pathways, both pineal and systemic, may be an important aspect in how viruses drive the cellular changes that underpin their control of cellular function. We review the melatonergic pathway role in viral infections, emphasizing influenza and covid-19 infections. Viral, or preexistent, suppression of pineal melatonin disinhibits neutrophil attraction, thereby contributing to an initial "cytokine storm", as well as the regulation of other immune cells. Melatonin induces the circadian gene, Bmal1, which disinhibits the pyruvate dehydrogenase complex (PDC), countering viral inhibition of Bmal1/PDC. PDC drives mitochondrial conversion of pyruvate to acetyl-coenzyme A (acetyl-CoA), thereby increasing the tricarboxylic acid cycle, oxidative phosphorylation, and ATP production. Pineal melatonin suppression attenuates this, preventing the circadian "resetting" of mitochondrial metabolism. This is especially relevant in immune cells, where shifting metabolism from glycolytic to oxidative phosphorylation, switches cells from reactive to quiescent phenotypes. Acetyl-CoA is a necessary cosubstrate for arylalkylamine N-acetyltransferase, providing an acetyl group to serotonin, and thereby initiating the melatonergic pathway. Consequently, pineal melatonin regulates mitochondrial melatonin and immune cell phenotype. Virus- and cytokine-storm-driven control of the pineal and mitochondrial melatonergic pathway therefore regulates immune responses. Virus-and cytokine storm-driven changes also increase gut permeability and dysbiosis, thereby suppressing levels of the short-chain fatty acid, butyrate, and increasing circulating lipopolysaccharide (LPS). The alterations in butyrate and LPS can promote viral replication and host symptom severity via impacts on the melatonergic pathway. Focussing on immune regulators has treatment implications for covid-19 and other viral infections.
-
2.
Thyroid-Gut-Axis: How Does the Microbiota Influence Thyroid Function?
Knezevic, J, Starchl, C, Tmava Berisha, A, Amrein, K
Nutrients. 2020;12(6)
-
-
-
Free full text
Plain language summary
Thyroid and gut disease often coexist together. This literature review highlights the strong interplay between gut, microbiota and thyroid disease. In autoimmune thyroid disease (AITD) gut bacteria imbalances, bacterial overgrowth, Coeliac's disease or non-coeliacs wheat sensitivity, increased gut permeability and resulting deficiency of thyroid nutrients are not uncommon. Inflammation and intestinal wall damage that lead to increased permeability are thought to be one of the driving factors for autoimmune activity. Allergens, certain drugs, impaired gut flora and nutrient deficiencies are some of the contributors to heightened intestinal permeability. Furthermore, the gut walls host deiodinase enzymes that convert thyroid hormone to its active form. The gut microbiota however influence thyroid function in their own rights. The bacteria are crucial for nutrient synthesis, absorption and availability, including those essential for thyroid health. Gut bacteria and their metabolites also play a significant role in the regulation, development and training of immune cells, relevant to AITD. After all, the gut also houses a large proportion of the immune system known as gut-associated lymphatic tissue (GALT). Besides, some bacteria species seem to be capable of balancing fluctuating thyroid hormone levels in the blood. The writings further elaborate on thyroid-essential nutrients and the gut such as iodine, iron, zinc, selenium and Vitamin D. And the impact of bariatric surgery on thyroid function and the presence of certain gut bacteria in thyroid cancers. In summary, the authors concluded that the thyroid-gut axis seems to exhibit a strong connection. Limited evidence from human studies showed promising results of probiotics and synbiotics on thyroid function and targeting the microbiota as a novel strategies for the management of thyroid disease is encouraged to be explored further. This article may be of interest to those looking for an informative summary on the many ways in which the gut influences thyroid function in health and disease.
Abstract
A healthy gut microbiota not only has beneficial effects on the activity of the immune system, but also on thyroid function. Thyroid and intestinal diseases prevalently coexist-Hashimoto's thyroiditis (HT) and Graves' disease (GD) are the most common autoimmune thyroid diseases (AITD) and often co-occur with Celiac Disease (CD) and Non-celiac wheat sensitivity (NCWS). This can be explained by the damaged intestinal barrier and the following increase of intestinal permeability, allowing antigens to pass more easily and activate the immune system or cross-react with extraintestinal tissues, respectively. Dysbiosis has not only been found in AITDs, but has also been reported in thyroid carcinoma, in which an increased number of carcinogenic and inflammatory bacterial strains were observed. Additionally, the composition of the gut microbiota has an influence on the availability of essential micronutrients for the thyroid gland. Iodine, iron, and copper are crucial for thyroid hormone synthesis, selenium and zinc are needed for converting T4 to T3, and vitamin D assists in regulating the immune response. Those micronutrients are often found to be deficient in AITDs, resulting in malfunctioning of the thyroid. Bariatric surgery can lead to an inadequate absorption of these nutrients and further implicates changes in thyroid stimulating hormone (TSH) and T3 levels. Supplementation of probiotics showed beneficial effects on thyroid hormones and thyroid function in general. A literature research was performed to examine the interplay between gut microbiota and thyroid disorders that should be considered when treating patients suffering from thyroid diseases. Multifactorial therapeutic and preventive management strategies could be established and more specifically adjusted to patients, depending on their gut bacteria composition. Future well-powered human studies are warranted to evaluate the impact of alterations in gut microbiota on thyroid function and diseases.
-
3.
Gut hormones in microbiota-gut-brain cross-talk.
Sun, LJ, Li, JN, Nie, YZ
Chinese medical journal. 2020;133(7):826-833
-
-
-
Free full text
-
Plain language summary
The bidirectional communication between the gastrointestinal tract and the brain, termed the gut-brain axis (GBA), is evidenced to to play a role in physiological and psychological health. While precise communication pathways are not yet clear, it is hypothesised this pathway may be an important therapeutic target in complex psychiatric and gastrointestinal disorders. The aim of this review is to summarize the role of gut hormones in the GBA and focus on how the microbiota interact with these hormones in health and disease. The literature shows the gut microbiota can affect the metabolism of various gut hormones, and these hormones can influence the microbiota. Evidence suggests this cross-talk may be a key regulator in appetite, immune response, stress response, and metabolism. Based on this review, the authors conclude the gut microbiota-hormone homeostatic relationship provides insight on the complex communication between the gut and the brain. They suggest future research should target the microbiota-hormones-gut-brain axis to develop new therapeutic strategies to psychiatric disorders.
Abstract
The homeostasis of the gut-brain axis has been shown to exert several effects on physiological and psychological health. The gut hormones released by enteroendocrine cells scattered throughout the gastrointestinal tract are important signaling molecules within the gut-brain axis. The interaction between gut microbiota and gut hormones has been greatly appreciated in gut-brain cross-talk. The microbiota plays an essential role in modulating many gut-brain axis-related diseases, ranging from gastrointestinal disorders to psychiatric diseases. Similarly, gut hormones also play pleiotropic and important roles in maintaining health, and are key signals involved in gut-brain axis. More importantly, gut microbiota can affect the release and functions of gut hormones. This review highlights the role of gut microbiota in the gut-brain axis and focuses on how microbiota-related gut hormones modulate various physiological functions. Future studies could target the microbiota-hormones-gut brain axis to develop novel therapeutics for different psychiatric and gastrointestinal disorders, such as obesity, anxiety, and depression.
-
4.
Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study.
Holman, N, Knighton, P, Kar, P, O'Keefe, J, Curley, M, Weaver, A, Barron, E, Bakhai, C, Khunti, K, Wareham, NJ, et al
The lancet. Diabetes & endocrinology. 2020;8(10):823-833
-
-
-
Free full text
-
Plain language summary
Diabetes, cardiovascular disease, and hypertension are the most common chronic conditions predisposing people to severe COVID-19 disease. The aim of this population-based cohort study, using data from 98% of general practices in England, was to investigate the associations between various risk factors, including poor blood sugar control, and COVID-19-related deaths in people with type 1 and type 2 diabetes. Between Feb 16 and May 11, 2020, 1604 people with type 1 diabetes and 36 291 people with type 2 diabetes died from all causes, of which almost 30% had COVID-19 listed on the death certificate, either a primary underlying or secondary cause of death. Male gender, age and being of Black or Asian ethnicity were associated with an increased mortality from COVID-19. Poor blood sugar control, as determined by HbA1C, prior to infection was strongly associated with COVID-19-related death, independent of other risk factors. Obesity (BMI of 30 or over) as well as being underweight were also significantly associated with COVID-19 mortality. The authors discuss that people with diabetes are at increased risk of many serious infections and that high blood glucose levels are known to impair immunity and may amplify the hyperimmune response associated with severe COVID-19.
Abstract
BACKGROUND Diabetes has been associated with increased COVID-19-related mortality, but the association between modifiable risk factors, including hyperglycaemia and obesity, and COVID-19-related mortality among people with diabetes is unclear. We assessed associations between risk factors and COVID-19-related mortality in people with type 1 and type 2 diabetes. METHODS We did a population-based cohort study of people with diagnosed diabetes who were registered with a general practice in England. National population data on people with type 1 and type 2 diabetes collated by the National Diabetes Audit were linked to mortality records collated by the Office for National Statistics from Jan 2, 2017, to May 11, 2020. We identified the weekly number of deaths in people with type 1 and type 2 diabetes during the first 19 weeks of 2020 and calculated the percentage change from the mean number of deaths for the corresponding weeks in 2017, 2018, and 2019. The associations between risk factors (including sex, age, ethnicity, socioeconomic deprivation, HbA1c, renal impairment [from estimated glomerular filtration rate (eGFR)], BMI, tobacco smoking status, and cardiovascular comorbidities) and COVID-19-related mortality (defined as International Classification of Diseases, version 10, code U07.1 or U07.2 as a primary or secondary cause of death) between Feb 16 and May 11, 2020, were investigated by use of Cox proportional hazards models. FINDINGS Weekly death registrations in the first 19 weeks of 2020 exceeded the corresponding 3-year weekly averages for 2017-19 by 672 (50·9%) in people with type 1 diabetes and 16 071 (64·3%) in people with type 2 diabetes. Between Feb 16 and May 11, 2020, among 264 390 people with type 1 diabetes and 2 874 020 people with type 2 diabetes, 1604 people with type 1 diabetes and 36 291 people with type 2 diabetes died from all causes. Of these total deaths, 464 in people with type 1 diabetes and 10 525 in people with type 2 diabetes were defined as COVID-19 related, of which 289 (62·3%) and 5833 (55·4%), respectively, occurred in people with a history of cardiovascular disease or with renal impairment (eGFR <60 mL/min per 1·73 m2). Male sex, older age, renal impairment, non-white ethnicity, socioeconomic deprivation, and previous stroke and heart failure were associated with increased COVID-19-related mortality in both type 1 and type 2 diabetes. Compared with people with an HbA1c of 48-53 mmol/mol (6·5-7·0%), people with an HbA1c of 86 mmol/mol (10·0%) or higher had increased COVID-19-related mortality (hazard ratio [HR] 2·23 [95% CI 1·50-3·30, p<0·0001] in type 1 diabetes and 1·61 [1·47-1·77, p<0·0001] in type 2 diabetes). In addition, in people with type 2 diabetes, COVID-19-related mortality was significantly higher in those with an HbA1c of 59 mmol/mol (7·6%) or higher than in those with an HbA1c of 48-53 mmol/mol (HR 1·22 [95% CI 1·15-1·30, p<0·0001] for 59-74 mmol/mol [7·6-8·9%] and 1·36 [1·24-1·50, p<0·0001] for 75-85 mmol/mol [9·0-9·9%]). The association between BMI and COVID-19-related mortality was U-shaped: in type 1 diabetes, compared with a BMI of 25·0-29·9 kg/m2, a BMI of less than 20·0 kg/m2 had an HR of 2·45 (95% CI 1·60-3·75, p<0·0001) and a BMI of 40·0 kg/m2 or higher had an HR of 2·33 (1·53-3·56, p<0·0001); the corresponding HRs for type 2 diabetes were 2·33 (2·11-2·56, p<0·0001) and 1·60 (1·47-1·75, p<0·0001). INTERPRETATION Deaths in people with type 1 and type 2 diabetes rose sharply during the initial COVID-19 pandemic in England. Increased COVID-19-related mortality was associated not only with cardiovascular and renal complications of diabetes but, independently, also with glycaemic control and BMI. FUNDING None.
-
5.
COVID-19 and diabetes: The why, the what and the how.
Cuschieri, S, Grech, S
Journal of diabetes and its complications. 2020;34(9):107637
-
-
-
Free full text
-
Plain language summary
Early reports have shown that individuals with diabetes who contract Covid-19 have higher hospital admissions and mortality rates, classing them as a vulnerable group. This review paper aimed to explain why this group of people are vulnerable and what measures could be recommended. The paper outlined that individuals with diabetes have a compromised immune system due to uncontrolled blood sugar levels. In addition to this, individuals with diabetes and Covid-19 may have a higher risk of organ damage due to the effects of the body's immune response combined with the disordered biological processes associated with their pre-existing condition. Conversely, it was discussed that Covid-19 could exacerbate diabetes progression if the Covid-19 virus entered the cells of the pancreas, causing a blood sugar imbalance. As a result, the importance of optimal blood sugar control was outlined. Several medications were addressed and their benefits/disadvantages discussed. Amongst those reviewed were medications such as GLP-1 agonists, which may help with controlling blood sugar levels and may prevent Covid-19 entering the body's own cells, and metformin, which was initially developed as an anti-influenza drug. Finally the paper discussed diabetes specific precautions to avoid contracting Covid-19. Vitamin D supplementation, regular blood sugar checks, lifestyle measures such as exercise and dietary requirements and allowing individuals with diabetes to have large supplies of their medications to avoid leaving the house were discussed. It was concluded that during the Covid-19 pandemic, individuals with diabetes require particular care in order to avoid additional burden on healthcare systems. For those individuals with diabetes who haven’t contracted Covid-19, this paper could be used to recommend any extra precautions to take to avoid contracting this virus.
Abstract
BACKGROUND The novel coronavirus SARS-CoV-2 has taken the world by storm. Alongside COVID-19, diabetes is a long-standing global epidemic. The diabetes population has been reported to suffer adverse outcomes if infected by COVID-19. The aim was to summarise information and resources available on diabetes and COVID-19, highlighting special measures that individuals with diabetes need to follow. METHODS A search using keywords "COVID-19" and "Diabetes" was performed using different sources, including PubMed and World Health Organization. RESULTS COVID-19 may enhance complications in individuals with diabetes through an imbalance in angiotension-converting enzyme 2 (ACE2) activation pathways leading to an inflammatory response. ACE2 imbalance in the pancreas causes acute β-cell dysfunction and a resultant hyperglycemic state. These individuals may be prone to worsened COVID-19 complications including vasculopathy, coagulopathy as well as psychological stress. Apart from general preventive measures, remaining hydrated, monitoring blood glucose regularly and monitoring ketone bodies in urine if on insulin is essential. All this while concurrently maintaining physical activity and a healthy diet. Different supporting entities are being set up to help this population. CONCLUSION COVID-19 is a top priority. It is important to remember that a substantial proportion of the world's population is affected by other co-morbidities such as diabetes. These require special attention during this pandemic to avoid adding on to the burden of countries' healthcare systems.
-
6.
Coronavirus disease 2019 (COVID-19) and obesity. Impact of obesity and its main comorbidities in the evolution of the disease.
Cornejo-Pareja, IM, Gómez-Pérez, AM, Fernández-García, JC, Barahona San Millan, R, Aguilera Luque, A, de Hollanda, A, Jiménez, A, Jimenez-Murcia, S, Munguia, L, Ortega, E, et al
European eating disorders review : the journal of the Eating Disorders Association. 2020;28(6):799-815
-
-
-
Plain language summary
The Covid-19 pandemic has caused thousands of deaths worldwide. Being obese is associated with worse outcomes following infection with Covid-19. This review aimed to summarise the data available on the relationship between Covid-19 and obesity, and explored some of the possible reasons for this relationship. The researchers found that obesity is an independent and strong risk factor for severe infection, Intensive Care Unit (ICU) admission and death. The impact of obesity might be of particular relevance in males and in younger individuals. Long‐term complications of Covid‐19 could also be more frequent and severe in obese subjects. There are many potential mechanisms that could explain this relationship. These include the effects of obesity and related diseases such as diabetes, high blood pressure and heart disease on the immune system, lung function, vitamin D deficiency and male hormones. The researchers also discussed the possibility of fat cells acting as a possible reservoir for Covid-19 infection. Research into Covid-19 is still at a very early stage and more studies are needed.
Abstract
The COVID-19 pandemic is posing a great challenge worldwide. Its rapid progression has caused thousands of deaths worldwide. Although multiple aspects remain to be clarified, some risk factors associated with a worse prognosis have been identified. These include obesity and some of its main complications, such as diabetes and high blood pressure. Furthermore, although the possible long-term complications and psychological effects that may appear in survivors of COVID-19 are not well known yet, there is a concern that those complications may be greater in obese patients. In this manuscript, we review some of the data published so far and the main points that remain to be elucidated are emphasized.
-
7.
Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism.
Scheele, C, Wolfrum, C
Endocrine reviews. 2020;41(1)
-
-
-
Free full text
-
Plain language summary
Brown adipose tissue (BAT) is an important contributor to the regulation of metabolism via cellular communication with organs such as liver, muscle, gut and central nervous system. BAT is important for heat generation and is at high levels in human infants. Levels of activation of BAT decline as we age and it has been shown that the amount of BAT is smaller and its activity reduced in those with obesity and type 2 diabetes. To date, there is no answer to efficiently restore functional BAT in aging and obese subjects. This review looks at experiments done on the factors secreted from active BAT (batokines). The review aims to provide a structure for the processes and cell types involved in BAT and the recent findings of BAT whole-body communication are discussed. Altogether, these findings demonstrate that BAT has an adaptive capacity. Studying batokines, offers an alternative approach to identify novel drug targets for metabolic regulation.
Abstract
Infants rely on brown adipose tissue (BAT) as a primary source of thermogenesis. In some adult humans, residuals of brown adipose tissue are adjacent to the central nervous system and acute activation increases metabolic rate. Brown adipose tissue (BAT) recruitment occurs during cold acclimation and includes secretion of factors, known as batokines, which target several different cell types within BAT, and promote adipogenesis, angiogenesis, immune cell interactions, and neurite outgrowth. All these processes seem to act in concert to promote an adapted BAT. Recent studies have also provided exciting data on whole body metabolic regulation with a broad spectrum of mechanisms involving BAT crosstalk with liver, skeletal muscle, and gut as well as the central nervous system. These widespread interactions might reflect the property of BAT of switching between an active thermogenic state where energy is highly consumed and drained from the circulation, and the passive thermoneutral state, where energy consumption is turned off. (Endocrine Reviews 41: XXX - XXX, 2020).
-
8.
The effect of different sources of fish and camelina sativa oil on immune cell and adipose tissue mRNA expression in subjects with abnormal fasting glucose metabolism: a randomized controlled trial.
de Mello, VD, Dahlman, I, Lankinen, M, Kurl, S, Pitkänen, L, Laaksonen, DE, Schwab, US, Erkkilä, AT
Nutrition & diabetes. 2019;9(1):1
-
-
-
Free full text
Plain language summary
Dietary fish oils, particularly omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) found in oily fish, nuts and seeds have long been researched and purported to have both anti-inflammatory and glucose-stabilising effects when consumed orally and it is widely believed that in reducing low-grade inflammation and stabilising blood glucose levels, the risk of suffering from type 2 diabetes, heart disease or a stroke is reduced. Lean fish on the other hand has been far less researched with regards to its protective effects. This study was a randomised controlled study designed to assess and compare the protective effects of fish oils and Camelina Sativa oil (CSO - a seed oil containing alpha-linolenic acid) on inflammatory-related genes in subjects with suggestive pre-diabetes. Subjects were allocated to a randomised group and instructed to consume a given amount of either fatty fish, lean fish, camelina oil, or no fish/oil (control group). The study was carried out on 72 participants over a 12-week period. Although no significant change could be seen on inflammatory gene expression for the group consuming fatty fish, there was a modest decrease in inflammatory gene markers in the group consuming lean fish and a significant decrease in the group consuming CSO. Implications from this study suggest that CSO exerts its protective effect by reducing inflammation, therefore possibly decreasing the risk of strokes and cardiovascular episodes. The authors suggest that consuming a variety of fish, especially lean fish 4 times/ week could also play a protective role in cardiovascular health and type 2 diabetes.
Abstract
BACKGROUND/OBJECTIVES Molecular mechanisms linking fish and vegetable oil intakes to their healthy metabolic effects may involve attenuation of inflammation. Our primary aim was to examine in a randomized controlled setting whether diets enriched in fatty fish (FF), lean fish (LF) or ALA-rich camelina sativa oil (CSO) differ in their effects on the mRNA expression response of selected inflammation-related genes in peripheral blood mononuclear cells (PBMCs) and subcutaneous adipose tissue (SAT) in subjects with impaired fasting glucose. SUBJECTS/METHODS Samples from 72 participants randomized to one of the following 12-week intervention groups, FF (n = 19), LF (n = 19), CSO (n = 17) or a control group (n = 17), were available for the PBMC study. For SAT, 39 samples (n = 8, n = 10, n = 9, n = 12, respectively) were available. The mRNA expression was measured at baseline and 12 weeks by TaqMan® Low Density Array. RESULTS In PBMCs, LF decreased ICAM1 mRNA expression (P < 0.05), which was different (P = 0.06, Bonferroni correction) from the observed increase in the FF group (P < 0.05). Also, compared to the control group, LF decreased ICAM1 mRNA expression (P < 0.05). Moreover, the change in ICAM1 mRNA expression correlated positively with the intake of FF (P < 0.05) and negatively with the intake of LF (P < 0.05), independently of study group. A diet enriched in CSO, a rich source of alpha-linolenic acid (ALA), decreased PBMC IFNG mRNA expression (P < 0.01). The intake of CSO in the CSO group, but not the increase in plasma ALA proportions, correlated inversely with the IFNG mRNA expression in PBMCs (P = 0.08). In SAT, when compared with the control group, the effect of FF on decreasing IL1RN mRNA expression was significant (P < 0.03). CONCLUSION We propose that CSO intake may partly exert its benefits through immuno-inflammatory molecular regulation in PBMCs, while modulation of ICAM1 expression, an endothelial/vascular-related gene, may be more dependent on the type of fish consumed.
-
9.
Satiating Effect of a Ketogenic Diet and Its Impact on Muscle Improvement and Oxidation State in Multiple Sclerosis Patients.
Benlloch, M, López-Rodríguez, MM, Cuerda-Ballester, M, Drehmer, E, Carrera, S, Ceron, JJ, Tvarijonaviciute, A, Chirivella, J, Fernández-García, D, de la Rubia Ortí, JE
Nutrients. 2019;11(5)
-
-
-
Free full text
Plain language summary
Multiple sclerosis (MS) is an auto-immune condition that affects the brain and spinal cord. In MS, the coating that protects the nerves (myelin) is damaged, and this can lead to muscle wasting. The aim of this pilot study was to establish whether a low carbohydrate (‘ketogenic’) diet would lead to improvements in muscle mass in patients with MS. 27 MS patients were given instructions to follow a Mediterranean-style ketogenic diet that consisted of 20% total calories from protein, 40% of calories from carbohydrate and 40% of calories from fat, including 60ml of coconut oil per day. After four months on the diet, participants had gained muscle mass and lost fat. They also felt less hungry, and blood tests showed lower levels of inflammation and oxidation. The researchers concluded that a ketogenic diet has the potential to provide an additional therapy for patients with MS.
Abstract
BACKGROUND It was previously established that Multiple sclerosis (MS) generates energy alterations at the mitochondrial level related to the loss of muscle mass. Ketone bodies, mainly beta-hydroxybutyrate (BHB), re-establish this energy alteration causing satiety, changes in body composition and a decrease in hormone-dependant hunger, such as ghrelin. The aim of this study was to establish possible improvements in body composition and the level of oxidation in patients with MS, by means of the satiating effect of a ketogenic diet. METHODS A pilot study was carried out with 27 MS patients who were given a Mediterranean isocaloric and ketogenic diet for 4 months. Anthropometric measurements, as well as satiety and hunger perception (VAS scale), were taken. In addition, BHB and paraoxonase 1 (PON1), as an oxidation marker, were measured by spectrophotometric automated assays, and ghrelin was determined by an enzyme immunoassay in the serum. All measurements were taken before and after the intervention. RESULTS A significant increase in satiety perception at lunch and dinner and of BHB in the blood was obtained. Hunger perception decreased significantly at lunch and dinner with similar levels of ghrelin. In addition, an important increase in lean mass and PON1 was observed. To our knowledge, this is the first study addressing improvements in body composition, oxidation state and metabolism in MS patients, based on the satiating effect of a Mediterranean isocaloric diet. CONCLUSION A ketogenic diet increases lean mass and decreases inflammation and oxidation possibly as a consequence of an increase in satiety and decrease in hunger in MS patients.
-
10.
A Large Randomized Trial: Effects of Mindfulness-Based Stress Reduction (MBSR) for Breast Cancer (BC) Survivors on Salivary Cortisol and IL-6.
Lengacher, CA, Reich, RR, Paterson, CL, Shelton, M, Shivers, S, Ramesar, S, Pleasant, ML, Budhrani-Shani, P, Groer, M, Post-White, J, et al
Biological research for nursing. 2019;21(1):39-49
-
-
-
Free full text
-
Plain language summary
Breast cancer survivors (BCS) often experience physiological and psychological stressors related to their diagnosis and treatment, and a disruption of cortisol function can affect cancer risk and progression. Increased levels of the stress hormone cortisol and interleukin-6 (IL-6), a pro-inflammatory immune mediator, have been associated with acute and chronic stress levels. Mindfulness-Based Stress Reduction (MBSR) is a clinical stress-reducing program, which has been found to decrease psychological and physical symptoms associated with stress. The purpose of this randomised study, involving 299 BCS, was to evaluate the efficacy of MBSR in reducing cortisol and IL-6 levels, compared to a usual-care control treatment. Statistically significant reductions in cortisol levels were seen after the delivery of the MBSR program at both time points (week 1 and 6), and at week 6 only for IL-6. There was no significant difference in change in cortisol or IL6 levels over time between the MBSR and the usual-care groups. An association was observed between levels of IL-6 and psychological and physical symptoms and quality of life, but not for cortisol. The authors conclude that MBSR can alleviate the stress response in the short term for breast cancer survivors.
Abstract
Breast cancer survivors (BCS) often experience psychological and physiological symptoms after cancer treatment. Mindfulness-based stress reduction (MBSR), a complementary and alternative therapy, has reduced subjective measures of stress, anxiety, and fatigue among BCS. Little is known, however, about how MBSR affects objective markers of stress, specifically the stress hormone cortisol and the pro-inflammatory cytokine interleukin-6 (IL-6). In the present study, BCS ( N = 322) were randomly assigned to a 6-week MBSR program for BC or usual-care control. Measurements of cortisol, IL-6, symptoms, and quality of life were obtained at orientation and 6 weeks. Cortisol and IL-6 were also measured prior to and after the MBSR(BC) class Weeks 1 and 6. The mean age of participants was 56.6 years and 69.4% were White non-Hispanic. Most had Stage I (33.8%) or II (35.7%) BC, and 35.7% had received chemotherapy and radiation. Cortisol levels were reduced immediately following MBSR(BC) class compared to before the class Weeks 1 and 6 (Wilcoxon-signed rank test; p < .01, d = .52-.56). IL-6 was significantly reduced from pre- to postclass at Week 6 (Wilcoxon-signed rank test; p < .01, d = .21). No differences were observed between the MBSR(BC) and control groups from baseline to Week 6 using linear mixed models. Significant relationships with small effect sizes were observed between IL-6 and both symptoms and quality of life in both groups. Results support the use of MBSR(BC) to reduce salivary cortisol and IL-6 levels in the short term in BCS.