1.
The Emerging Role of Vitamin C in the Prevention and Treatment of COVID-19.
Carr, AC, Rowe, S
Nutrients. 2020;12(11)
-
-
-
Free full text
Plain language summary
There are many parallels between the clinical presentations of pneumonia and sepsis with the novel coronavirus disease (COVID-19). This has enabled researchers to draw on decades of research and apply it the current pandemic. The purpose of this paper is to evaluate the potential role of Vitamin C in the prevention and treatment of COVID-19 based on existing research. Examining the current literature, the authors found many therapeutic properties of vitamin C applicable to the clinical presentations of COVID-19. These include modulating the immune system, decreasing inflammation and lessening complications in the lungs. Emerging research indicates that administering vitamin C early during respiratory infection may prevent its progression to sepsis, thus reducing organ failure. Additionally, a recent observational study has found low vitamin C status in critically ill patients with COVID-19, and numerous randomized controlled trials (RCTs) are currently assessing intravenous vitamin C in patients with COVID-19. Based on the current research, the authors warrant administering vitamin C to patients with low vitamin C levels and severe respiratory infections while optimistically awaiting results from current RCTs.
Abstract
Investigation into the role of vitamin C in the prevention and treatment of pneumonia and sepsis has been underway for many decades. This research has laid a strong foundation for translation of these findings into patients with severe coronavirus disease (COVID-19). Research has indicated that patients with pneumonia and sepsis have low vitamin C status and elevated oxidative stress. Administration of vitamin C to patients with pneumonia can decrease the severity and duration of the disease. Critically ill patients with sepsis require intravenous administration of gram amounts of the vitamin to normalize plasma levels, an intervention that some studies suggest reduces mortality. The vitamin has pleiotropic physiological functions, many of which are relevant to COVID-19. These include its antioxidant, anti-inflammatory, antithrombotic and immuno-modulatory functions. Preliminary observational studies indicate low vitamin C status in critically ill patients with COVID-19. There are currently a number of randomized controlled trials (RCTs) registered globally that are assessing intravenous vitamin C monotherapy in patients with COVID-19. Since hypovitaminosis C and deficiency are common in low-middle-income settings, and many of the risk factors for vitamin C deficiency overlap with COVID-19 risk factors, it is possible that trials carried out in populations with chronic hypovitaminosis C may show greater efficacy. This is particularly relevant for the global research effort since COVID-19 is disproportionately affecting low-middle-income countries and low-income groups globally. One small trial from China has finished early and the findings are currently under peer review. There was significantly decreased mortality in the more severely ill patients who received vitamin C intervention. The upcoming findings from the larger RCTs currently underway will provide more definitive evidence. Optimization of the intervention protocols in future trials, e.g., earlier and sustained administration, is warranted to potentially improve its efficacy. Due to the excellent safety profile, low cost, and potential for rapid upscaling of production, administration of vitamin C to patients with hypovitaminosis C and severe respiratory infections, e.g., COVID-19, appears warranted.
2.
COVID-19 infection: the perspectives on immune responses.
Shi, Y, Wang, Y, Shao, C, Huang, J, Gan, J, Huang, X, Bucci, E, Piacentini, M, Ippolito, G, Melino, G
Cell death and differentiation. 2020;27(5):1451-1454
-
-
Free full text
-
Plain language summary
The SARS-CoV-2 infection triggers an immune response which varies greatly from one person to another. It can be roughly divided into three stages: stage I, an asymptomatic incubation period with or without detectable virus; stage II, non-severe symptomatic period with the presence of virus; stage III, severe respiratory symptomatic stage with high viral load. Currently around 15% of people infected end up in severe stage III. There appears to be a two-phase immune response; an early protective phase and a second inflammation-driven damaging phase. In phase one the adaptive immune system responds to the virus. Being in good general health is important in this phase to limiting the progression of the disease to a more severe stage. In phase two the innate immune system response to tissue damage caused by the virus could lead to widespread inflammation of the lungs and acute respiratory distress syndrome or respiratory failure. Therapeutically this raises the question of whether the immune response should be boosted in phase one and suppressed in phase two. There also appears to be an element of viral relapse in some patients discharged from hospital indicating that a virus-eliminating immune response may be difficult to achieve naturally. These same patients may also not respond to vaccines. Overall, it is still unclear why some people develop severe disease, whilst others do not. Overall immunity alone does not explain the differences in disease presentation.