-
1.
Exercise Training Modulates Gut Microbiota Profile and Improves Endotoxemia.
Motiani, KK, Collado, MC, Eskelinen, JJ, Virtanen, KA, Löyttyniemi, E, Salminen, S, Nuutila, P, Kalliokoski, KK, Hannukainen, JC
Medicine and science in sports and exercise. 2020;52(1):94-104
-
-
-
Free full text
-
Plain language summary
The gut microbiome differs between healthy people and those with metabolic diseases, including metabolic syndrome and type 2 diabetes (T2D) and it is suggested that this association is mediated by endotoxemia, the release of toxins, in particular lipopolysaccharides (LPS), from the gut bacteria. The aim of this study was to investigate the effects of exercise on gut microbiota composition and metabolic endotoxemia in people with prediabetes and T2D. 26 sedentary participants with either prediabetes or T2D took part in either a sprint interval training (SIT) or moderate-intensity continuous training (MICT) three times per week for two weeks. Both training types induced fat loss and improved the gut microbiota, HbA1C (a marker for whole body insulin sensitivity) as well as some markers of systemic and intestinal inflammation, although there were differences in the way the two types of exercise altered the gut bacterial composition. Only SIT improved aerobic capacity. The authors concluded that exercise training improves the gut microbiota and reduces endotoxemia.
Abstract
INTRODUCTION Intestinal metabolism and microbiota profiles are impaired in obesity and insulin resistance. Moreover, dysbiotic gut microbiota has been suggested to promote systemic low-grade inflammation and insulin resistance through the release of endotoxins particularly lipopolysaccharides. We have previously shown that exercise training improves intestinal metabolism in healthy men. To understand whether changes in intestinal metabolism interact with gut microbiota and its release of inflammatory markers, we studied the effects of sprint interval (SIT) and moderate-intensity continuous training (MICT) on intestinal metabolism and microbiota in subjects with insulin resistance. METHODS Twenty-six, sedentary subjects (prediabetic, n = 9; type 2 diabetes, n = 17; age, 49 [SD, 4] yr; body mass index, 30.5 [SD, 3]) were randomized into SIT or MICT. Intestinal insulin-stimulated glucose uptake (GU) and fatty acid uptake (FAU) from circulation were measured using positron emission tomography. Gut microbiota composition was analyzed by 16S rRNA gene sequencing and serum inflammatory markers with multiplex assays and enzyme-linked immunoassay kit. RESULTS V˙O2peak improved only after SIT (P = 0.01). Both training modes reduced systematic and intestinal inflammatory markers (tumor necrosis factor-α, lipopolysaccharide binding protein) (time P < 0.05). Training modified microbiota profile by increasing Bacteroidetes phylum (time P = 0.03) and decreasing Firmicutes/Bacteroidetes ratio (time P = 0.04). Moreover, there was a decrease in Clostridium genus (time P = 0.04) and Blautia (time P = 0.051). Only MICT decreased jejunal FAU (P = 0.02). Training had no significant effect on intestinal GU. Colonic GU associated positively with Bacteroidetes and inversely with Firmicutes phylum, ratio Firmicutes/Bacteroidetes and Blautia genus. CONCLUSIONS Intestinal substrate uptake associates with gut microbiota composition and whole-body insulin sensitivity. Exercise training improves gut microbiota profiles and reduces endotoxemia.
-
2.
Effects of Synbiotic Supplement on Human Gut Microbiota, Body Composition and Weight Loss in Obesity.
Sergeev, IN, Aljutaily, T, Walton, G, Huarte, E
Nutrients. 2020;12(1)
-
-
-
Free full text
Plain language summary
The gut microbiota plays a role in the development of obesity and associated diseases. Whilst energy-restricted, low-carbohydrate, high-protein diets can facilitate substantial weight-loss, they also have been linked to ill-effects and unfavourable changes in the gut microbiota from excess protein fermentation. Pro-and prebiotics (synbiotics) have become a promising intervention in the management of obesity. This small placebo-controlled clinical trial involved 20 obese adults following an energy-restricted (approx.950 kcal/day) low-carbohydrate, high-protein diet. The study examined whether a supplementary synbiotic contributed to additional changes in body composition and metabolic biomarkers. The synbiotic contained Lactobacilli spp. and Bifidobacteria spp. and a prebiotic mixture of galactooligosaccharides. Overall, at the end of the 3-month trial, there was no remarkable difference between the groups. Both experienced a significant and decreasing trend in body mass, waist circumference, body mass index, fat mass, fat percentage, and glucose level, affirming the known benefits of the described weight-loss diet. However, the synbiotic supplementation group had a greater decrease in HbA1C and significant alterations in gut microbiota, showing an increased abundance of gut bacteria associated with positive health effects. Due to the complexity of microbial species and host interactions, the authors advocate for more research to identify their significance and shed light on contradictory findings. This study identified that synbiotics may not contribute to additional changes in body composition when combined with an energy-restricted, low-carbohydrate, high-protein diet but they can offer additional health benefits by inducing favourable changes to the gut microbiota.
Abstract
Targeting gut microbiota with synbiotics (probiotic supplements containing prebiotic components) is emerging as a promising intervention in the comprehensive nutritional approach to reducing obesity. Weight loss resulting from low-carbohydrate high-protein diets can be significant but has also been linked to potentially negative health effects due to increased bacterial fermentation of undigested protein within the colon and subsequent changes in gut microbiota composition. Correcting obesity-induced disruption of gut microbiota with synbiotics can be more effective than supplementation with probiotics alone because prebiotic components of synbiotics support the growth and survival of positive bacteria therein. The purpose of this placebo-controlled intervention clinical trial was to evaluate the effects of a synbiotic supplement on the composition, richness and diversity of gut microbiota and associations of microbial species with body composition parameters and biomarkers of obesity in human subjects participating in a weight loss program. The probiotic component of the synbiotic used in the study contained Lactobacillus acidophilus, Bifidobacterium lactis, Bifidobacterium longum, and Bifidobacterium bifidum and the prebiotic component was a galactooligosaccharide mixture. The results showed no statistically significant differences in body composition (body mass, BMI, body fat mass, body fat percentage, body lean mass, and bone mineral content) between the placebo and synbiotic groups at the end of the clinical trial (3-month intervention, 20 human subjects participating in weight loss intervention based on a low-carbohydrate, high-protein, reduced energy diet). Synbiotic supplementation increased the abundance of gut bacteria associated with positive health effects, especially Bifidobacterium and Lactobacillus, and it also appeared to increase the gut microbiota richness. A decreasing trend in the gut microbiota diversity in the placebo and synbiotic groups was observed at the end of trial, which may imply the effect of the high-protein low-carbohydrate diet used in the weight loss program. Regression analysis performed to correlate abundance of species following supplementation with body composition parameters and biomarkers of obesity found an association between a decrease over time in blood glucose and an increase in Lactobacillus abundance, particularly in the synbiotic group. However, the decrease over time in body mass, BMI, waist circumstance, and body fat mass was associated with a decrease in Bifidobacterium abundance. The results obtained support the conclusion that synbiotic supplement used in this clinical trial modulates human gut microbiota by increasing abundance of potentially beneficial microbial species.
-
3.
Effects of Fecal Microbiome Transfer in Adolescents With Obesity: The Gut Bugs Randomized Controlled Trial.
Leong, KSW, Jayasinghe, TN, Wilson, BC, Derraik, JGB, Albert, BB, Chiavaroli, V, Svirskis, DM, Beck, KL, Conlon, CA, Jiang, Y, et al
JAMA network open. 2020;3(12):e2030415
-
-
-
Free full text
-
Plain language summary
Obesity has become a global pandemic even in adolescents. Lifestyle interventions have had limited impact on this cohort and drugs targeting obesity are often unlicensed in children. The gut microbiome has a role in weight regulation and may be a new target in adolescents with obesity. This randomised control trial of 87 adolescents with obesity over 26 weeks, aimed to assess if faecal microbiome transfer (FMT), which is a method whereby faecal matter is transplanted from one person to another, can be used to treat obesity. The results showed that FMT did not have an effect on body mass index (BMI) and the intervention group had a marginally increased BMI after FMT. Other disorders associated with obesity such as blood sugar levels were also unaffected by FMT, however there was a reduction in fat storage around the middle. It was concluded that FMT alone is not adequate to improve obesity in adolescents, but may reduce fat stored around the middle. Healthcare professionals could use this study to understand that simply transplanting one person’s gut microbiome to another, may not be enough. Targeted personalised approaches may be required, however further research is needed.
Abstract
Importance: Treatment of pediatric obesity is challenging. Preclinical studies in mice indicated that weight and metabolism can be altered by gut microbiome manipulation. Objective: To assess efficacy of fecal microbiome transfer (FMT) to treat adolescent obesity and improve metabolism. Design, Setting, and Participants: This randomized, double-masked, placebo-controlled trial (October 2017-March 2019) with a 26-week follow-up was conducted among adolescents aged 14 to 18 years with a body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) of 30 or more in Auckland, New Zealand. A total of 87 individuals took part-565 individuals responded to advertisements, 328 were ineligible, and 150 declined participation. Clinical data were analyzed from September 2019 to May 2020. Interventions: Single course of oral encapsulated fecal microbiome from 4 healthy lean donors of the same sex or saline placebo. Main Outcomes and Measures: Primary outcome was BMI standard deviation score at 6 weeks using intention-to-treat analysis. Secondary outcomes included body composition, cardiometabolic parameters, well-being, and gut microbiome composition. Results: Eighty-seven participants (59% female adolescents, mean [SD] age 17.2 [1.4] years) were randomized 1:1, in groups stratified by sex, to FMT (42 participants) or placebo (45 participants). There was no effect of FMT on BMI standard deviation score at 6 weeks (adjusted mean difference [aMD] -0.026; 95% CI -0.074, 0.022). Reductions in android-to-gynoid-fat ratio in the FMT vs placebo group were observed at 6, 12, and 26 weeks, with aMDs of -0.021 (95% CI, -0.041 to -0.001), -0.023 (95% CI, -0.043 to -0.003), and -0.029 (95% CI, -0.049 to -0.008), respectively. There were no observed effects on insulin sensitivity, liver function, lipid profile, inflammatory markers, blood pressure, total body fat percentage, gut health, and health-related quality of life. Gut microbiome profiling revealed a shift in community composition among the FMT group, maintained up to 12 weeks. In post-hoc exploratory analyses among participants with metabolic syndrome at baseline, FMT led to greater resolution of this condition (18 to 4) compared with placebo (13 to 10) by 26 weeks (adjusted odds ratio, 0.06; 95% CI, 0.01-0.45; P = .007). There were no serious adverse events recorded throughout the trial. Conclusions and Relevance: In this randomized clinical trial of adolescents with obesite, there was no effect of FMT on weight loss in adolescents with obesity, although a reduction in abdominal adiposity was observed. Post-hoc analyses indicated a resolution of undiagnosed metabolic syndrome with FMT among those with this condition. Further trials are needed to confirm these results and identify organisms and mechanisms responsible for mediating the observed benefits. Trial Registration: Australian New Zealand Clinical Trials Registry Identifier: ACTRN12615001351505.
-
4.
A structured weight loss program increases gut microbiota phylogenetic diversity and reduces levels of Collinsella in obese type 2 diabetics: A pilot study.
Frost, F, Storck, LJ, Kacprowski, T, Gärtner, S, Rühlemann, M, Bang, C, Franke, A, Völker, U, Aghdassi, AA, Steveling, A, et al
PloS one. 2019;14(7):e0219489
-
-
-
Free full text
Plain language summary
The global obesity epidemic is a major cause of the increase in type 2 diabetes mellitus (T2DM) and ensuing cardiovascular disease. The causes of obesity are complex ,and it has been shown that changes in the microbiome are associated with obesity. The microbiome can be altered through dietary intervention and weight loss. The aim of this open label pilot study was to investigate the microbiome of obese patients with T2DM during a weight loss programme. During the first six weeks the diet consisted of formula drink providing 800kcal per day, followed by nine weeks during which a regular diet of 1,200-1,500kcal per day was reintroduced, depending on the individuals’ needs. All participants lost weight continuously over the 15 weeks, from an average BMI of 39.6 at the start to 33.1 at the end of the programme. This was accompanied with an improvement in glucose metabolism, total and LDL cholesterol and uric acid levels, but not HDL cholesterol or triglycerides. All participants experienced changes in their microbiome towards greater diversity after the first six weeks of the low-calorie formula diet but these changes were partially reversed at the end of the study period at 15 weeks. A particular type of bacteria, Collinsella, which has been associated with poor metabolic health, was the only type found to remain reduced at the end of the 15 weeks, an 8.4-fold decrease. The authors hypothesise that this reduction in Collinsella may be associated with the improvement of metabolic factor in these patients at the end of the study.
Abstract
The global obesity epidemic constitutes a major cause of morbidity and mortality challenging public health care systems worldwide. Thus, a better understanding of its pathophysiology and the development of novel therapeutic options are urgently needed. Recently, alterations of the intestinal microbiome in the obese have been discussed as a promoting factor in the pathophysiology of obesity and as a contributing factor to related diseases such as type 2 diabetes and metabolic syndrome. The present pilot study investigated the effect of a structured weight loss program on fecal microbiota in obese type 2 diabetics. Twelve study subjects received a low-calorie formula diet for six weeks, followed by a nine week food reintroduction and stabilization period. Fecal microbiota were determined by 16S rRNA gene sequencing of stool samples at baseline, after six weeks and at the end of the study after fifteen weeks. All study subjects lost weight continuously throughout the program. Changes in fecal microbiota were most pronounced after six weeks of low-calorie formula diet, but reverted partially until the end of the study. However, the gut microbiota phylogenetic diversity increased persistently. The abundance of Collinsella, which has previously been associated with atherosclerosis, decreased significantly during the weight loss program. This study underlines the impact of dietary changes on the intestinal microbiome and further demonstrates the beneficial effects of weight loss on gut microbiota. Trial registration: ClinicalTrials.gov NCT02970838.
-
5.
Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial.
Roager, HM, Vogt, JK, Kristensen, M, Hansen, LBS, Ibrügger, S, Mærkedahl, RB, Bahl, MI, Lind, MV, Nielsen, RL, Frøkiær, H, et al
Gut. 2019;68(1):83-93
-
-
-
Free full text
-
Plain language summary
Whole grain consumption has been linked with decreased risk of lifestyle-related diseases. While animal studies have shown the gut microbiome to be a mediator of metabolic health, human studies examining the effect of whole grain intake of the gut remain inconclusive. The aim of this study was to investigate the effects of a whole grain diet on the gut microbiome, gut functionality and biomarkers of metabolic health. In this randomised, controlled, crossover study, 50 participants completed two 8-week dietary intervention periods comprising of a whole grain diet and a refined grain diet with a 6-week washout period. Examinations were done at the beginning and end of each intervention period to assess anthropometry and various plasma and gut markers. This study found that a whole grain diet as compared with a refined grain diet reduced energy intake and body weight as well as circulating markers of inflammation. Contrary to the hypothesis, these benefits were all observed independent of changes in the gut microbiome. Based on these results, the authors conclude higher intake of whole grains should be recommended to those at risk of inflammation-related disease.
Abstract
OBJECTIVE To investigate whether a whole grain diet alters the gut microbiome and insulin sensitivity, as well as biomarkers of metabolic health and gut functionality. DESIGN 60 Danish adults at risk of developing metabolic syndrome were included in a randomised cross-over trial with two 8-week dietary intervention periods comprising whole grain diet and refined grain diet, separated by a washout period of ≥6 weeks. The response to the interventions on the gut microbiome composition and insulin sensitivity as well on measures of glucose and lipid metabolism, gut functionality, inflammatory markers, anthropometry and urine metabolomics were assessed. RESULTS 50 participants completed both periods with a whole grain intake of 179±50 g/day and 13±10 g/day in the whole grain and refined grain period, respectively. Compliance was confirmed by a difference in plasma alkylresorcinols (p<0.0001). Compared with refined grain, whole grain did not significantly alter glucose homeostasis and did not induce major changes in the faecal microbiome. Also, breath hydrogen levels, plasma short-chain fatty acids, intestinal integrity and intestinal transit time were not affected. The whole grain diet did, however, compared with the refined grain diet, decrease body weight (p<0.0001), serum inflammatory markers, interleukin (IL)-6 (p=0.009) and C-reactive protein (p=0.003). The reduction in body weight was consistent with a reduction in energy intake, and IL-6 reduction was associated with the amount of whole grain consumed, in particular with intake of rye. CONCLUSION Compared with refined grain diet, whole grain diet did not alter insulin sensitivity and gut microbiome but reduced body weight and systemic low-grade inflammation. TRIAL REGISTRATION NUMBER NCT01731366; Results.
-
6.
Role of whole grains versus fruits and vegetables in reducing subclinical inflammation and promoting gastrointestinal health in individuals affected by overweight and obesity: a randomized controlled trial.
Kopf, JC, Suhr, MJ, Clarke, J, Eyun, SI, Riethoven, JM, Ramer-Tait, AE, Rose, DJ
Nutrition journal. 2018;17(1):72
-
-
-
Free full text
Plain language summary
Poor diet is the leading risk factor for premature death and disability in the United States. Poor diets lead to metabolic syndrome and its associated diseases such as heart disease and diabetes. The purpose of this study was to determine the impact of increasing intake of wholegrains or fruit and vegetables against a typical Western diet on inflammatory makers and gut microbiota composition. The study was a randomized, parallel arm feeding trial which enrolled fifty-two participants. The subjects were randomized into three groups (control, wholegrains, and fruit and vegetables). Results indicate that the wholegrain and fruit and vegetable diets had significant positive impacts on inflammatory markers. Interestingly, while both treatment groups decreased inflammatory markers, each decreased a different biomarker. The treatments induced individualised changes in microbiota composition such that treatment group differences were not identified. Authors conclude that wholegrain and fruit and vegetable diets have a positive impact on metabolic health in individuals affected by overweight or obesity.
Abstract
BACKGROUND Whole grains (WG) and fruits and vegetables (FV) have been shown to reduce the risk of metabolic disease, possibly via modulation of the gut microbiota. The purpose of this study was to determine the impact of increasing intake of either WG or FV on inflammatory markers and gut microbiota composition. METHODS A randomized parallel arm feeding trial was completed on forty-nine subjects with overweight or obesity and low intakes of FV and WG. Individuals were randomized into three groups (3 servings/d provided): WG, FV, and a control (refined grains). Stool and blood samples were collected at the beginning of the study and after 6 weeks. Inflammatory markers [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), lipopolysaccharide binding protein (LBP), and high sensitivity C-reactive protein (hs-CRP)] were measured. Stool sample analysis included short/branched chain fatty acids (S/BCFA) and microbiota composition. RESULTS There was a significant decrease in LBP for participants on the WG (- 0.2 μg/mL, p = 0.02) and FV (- 0.2 μg/mL, p = 0.005) diets, with no change in those on the control diet (0.1 μg/mL, p = 0.08). The FV diet induced a significant change in IL-6 (- 1.5 pg/mL, p = 0.006), but no significant change was observed for the other treatments (control, - 0.009 pg/mL, p = 0.99; WG, - 0.29, p = 0.68). The WG diet resulted in a significant decrease in TNF-α (- 3.7 pg/mL; p < 0.001), whereas no significant effects were found for those on the other diets (control, - 0.6 pg/mL, p = 0.6; FV, - 1.4 pg/mL, p = 0.2). The treatments induced individualized changes in microbiota composition such that treatment group differences were not identified, except for a significant increase in α-diversity in the FV group. The proportions of Clostridiales (Firmicutes phylum) at baseline were correlated with the magnitude of change in LBP during the study. CONCLUSIONS These data demonstrate that WG and FV intake can have positive effects on metabolic health; however, different markers of inflammation were reduced on each diet suggesting that the anti-inflammatory effects were facilitated via different mechanisms. The anti-inflammatory effects were not related to changes in gut microbiota composition during the intervention, but were correlated with microbiota composition at baseline. TRIAL REGISTRATION ClinicalTrials.gov , NCT02602496 , Nov 4, 2017.