1.
Metabolic Syndrome Features: Is There a Modulation Role by Mineral Water Consumption? A Review.
Costa-Vieira, D, Monteiro, R, Martins, MJ
Nutrients. 2019;11(5)
-
-
-
Free full text
Plain language summary
Metabolic syndrome, defined as having high blood pressure, triglycerides, blood glucose and being obese, is becoming an increasing worldwide health problem. It’s considered to be a result of modern-day life styles and there is no effective cure other than diet and life style interventions. This review paper looks at the mineral content and the alkalising effects of mineral water when consumed by participants with metabolic syndrome. The minerals within mineral water are thought to be more readily absorbed in the body than when consumed in foods and since Westernised diets are low in mineral content and high in acidity, consuming mineral water could help counteract mineral deficiencies and help to balance pH in those with metabolic syndrome. 20 studies, both animal and human, were selected for evaluation of the effect of mineral water on blood pressure, lipid profile, blood glucose and waist circumference. The authors conclude that mineral water is indeed beneficial to those with metabolic syndrome and can help counteract mineral deficiencies and balance pH. However, it is unclear whether mineral water in high quantities would be detrimental to a person with adequate mineral status and a pH within optimal range. Further studies are needed.
Abstract
Metabolic syndrome (MetSyn) promotes, among others, the development of atherosclerotic cardiovascular disease and diabetes. Its prevalence increases with age, highlighting the relevance of promoting precocious MetSyn primary prevention and treatment with easy-to-implement lifestyle interventions. MetSyn features modulation through mineral water consumption was reviewed on Pubmed, Scopus and Google Scholar databases, using the following keywords: metabolic syndrome, hypertension, blood pressure (BP), cholesterol, triglycerides, apolipoprotein, chylomicron, very low-density lipoprotein, low-density lipoprotein, high-density lipoprotein (HDL), glucose, insulin, body weight, body mass index, waist circumference (WC), obesity and mineral(-rich) water. Twenty studies were selected: 12 evaluated BP, 13 assessed total-triglycerides and/or HDL-cholesterol, 10 analysed glucose and/or 3 measured WC. Mineral waters were tested in diverse protocols regarding type and composition of water, amount consumed, diet and type and duration of the study. Human and animal studies were performed in populations with different sizes and characteristics. Distinct sets of five studies showed beneficial effects upon BP, total-triglycerides, HDL-cholesterol and glucose. WC modulation was not reported. Minerals/elements and active ions/molecules present in mineral waters (and their pH) are crucial to counterbalance their inadequate intake and body status as well as metabolic dysfunction and increased diet-induced acid-load observed in MetSyn. Study characteristics and molecular/physiologic mechanisms that could explain the different effects observed are discussed. Further studies are warranted for determining the mechanisms involved in the putative protective action of mineral water consumption against MetSyn features.