1.
Intramyocellular Lipids, Insulin Resistance, and Functional Performance in Patients with Severe Obstructive Sleep Apnea.
Chien, MY, Lee, PL, Yu, CW, Wei, SY, Shih, TT
Nature and science of sleep. 2020;12:69-78
-
-
-
Free full text
Plain language summary
Obstructive sleep apnoea syndrome (OSA) is characterized by repeated occlusion of the upper airway during sleep, resulting in periods of intermittent hypoxemia [low level of oxygen in blood]. The aim of this study was to (a) investigate the intramyocellular lipids (IMCL) and extramyocellular lipids (EMCL), biochemical data, and functional performance in patients with severe OSA versus controls, and (b) examine the correlations between intra-muscular lipid contents and biochemical and performance variables. This study is a clinical trial that recruited 20 patients with OSA and body mass index(BMI)-matched controls. Results demonstrate that patients with OSA had significantly lower IMCL and EMCL values when compared with their age-, and BMI-matched controls without OSA. Furthermore, compared with controls, patients with OSA had significantly reduced functional performance and exhibited abnormal biochemical data, including glucose and insulin levels and lipid profiles. Authors conclude that additional large-scale clinical trials are required to further explore the complex mechanism between OSA, muscle metabolism, and insulin action.
Abstract
PURPOSE An increasing number of studies have linked the severity of obstructive sleep apnea (OSA) with metabolic dysfunction. However, little is known about the lipid compartments (intramyocellular [IMCL] and extramyocellular [EMCL] lipids) inside the musculature in these patients. The present study was designed to investigate the IMCL and EMCL, biochemical data, and functional performance in patients with severe OSA, and to examine the correlations between intramuscular lipid contents and test variables. PARTICIPANTS AND METHODS Twenty patients with severe OSA (apnea-hypopnea index [AHI]: ≥30/h; body mass index [BMI]: 26.05±2.92) and 20 age- and BMI-matched controls (AHI <5/h) were enrolled. Proton magnetic resonance spectroscopy was used to measure the IMCL and EMCL of the right vastus lateralis muscle. Biochemical data, including levels of fasting plasma glucose, insulin, lipid profiles, and high-sensitivity C-reactive protein (hsCRP), were measured. Insulin resistance index (IR) was calculated using the homeostasis model assessment method. Performance tests included a cardiopulmonary exercise test and knee extension strength and endurance measurements. RESULTS Patients with severe OSA had significantly (P<0.05) lower values of IMCL (14.1±5.4 AU) and EMCL (10.3±5.8 AU) compared to the control group (25.2±17.6 AU and 14.3±11.1 AU, respectively). Patients with severe OSA had significantly higher hsCRP, IR, and dyslipidemia compared with controls (all P<0.05). Furthermore, IMCL was negatively correlated with AHI, cumulative time with nocturnal pulse oximetric saturation lower than 90% (TSpO2<90%) (ρ=-0.35, P<0.05), IR (ρ=-0.40, P<0.05), glucose (ρ=-0.33, P<0.05), and insulin (ρ=-0.36, P<0.05), and positively correlated with lowest oximetric saturation (ρ=0.33, P<0.01). CONCLUSION Skeletal muscle dysfunction and metabolic abnormalities were observed in patients with OSA that did not have obesity. IMCL was positively correlated with aerobic capacity and muscular performance, but negatively correlated with AHI and IR. Large-scale clinical trials are required to explore the complicated mechanism among OSA, intramuscular metabolism, and insulin action. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT00813852.
2.
How Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Progresses: The Natural History of ME/CFS.
Nacul, L, O'Boyle, S, Palla, L, Nacul, FE, Mudie, K, Kingdon, CC, Cliff, JM, Clark, TG, Dockrell, HM, Lacerda, EM
Frontiers in neurology. 2020;11:826
-
-
-
Free full text
Plain language summary
A good understanding of the disease course is vital not only for the design of preventative and intervention studies, but also to assess the timing and type of intervention that minimizes disease risk or optimizes prognosis. The aim of this review was to explore the long-term course of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and how presentation and pathophysiological abnormalities may vary with time. Literature shows that it is unknown how the initial host response to a stressor or insult compares in individuals who do or do not develop typical symptoms of ME/CFS. However, the return to good health, following exposure to mild or moderate levels of insult, seems to be impeded in ME/CFS when symptoms persist for longer than 3–6 months. Authors sought to provide a simple framework, similar to those of other chronic diseases, in an effort to extend the temporal perception of ME/CFS and better incorporate the less defined pre-illness stages of the disease. In fact, they conclude that by applying this framework to ME/CFS research efforts could better elucidate the pathophysiological mechanisms of the disease and identify potential therapeutic targets at distinct stages.
Abstract
We propose a framework for understanding and interpreting the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) that considers wider determinants of health and long-term temporal variation in pathophysiological features and disease phenotype throughout the natural history of the disease. As in other chronic diseases, ME/CFS evolves through different stages, from asymptomatic predisposition, progressing to a prodromal stage, and then to symptomatic disease. Disease incidence depends on genetic makeup and environment factors, the exposure to singular or repeated insults, and the nature of the host response. In people who develop ME/CFS, normal homeostatic processes in response to adverse insults may be replaced by aberrant responses leading to dysfunctional states. Thus, the predominantly neuro-immune manifestations, underlined by a hyper-metabolic state, that characterize early disease, may be followed by various processes leading to multi-systemic abnormalities and related symptoms. This abnormal state and the effects of a range of mediators such as products of oxidative and nitrosamine stress, may lead to progressive cell and metabolic dysfunction culminating in a hypometabolic state with low energy production. These processes do not seem to happen uniformly; although a spiraling of progressive inter-related and self-sustaining abnormalities may ensue, reversion to states of milder abnormalities is possible if the host is able to restate responses to improve homeostatic equilibrium. With time variation in disease presentation, no single ME/CFS case description, set of diagnostic criteria, or molecular feature is currently representative of all patients at different disease stages. While acknowledging its limitations due to the incomplete research evidence, we suggest the proposed framework may support future research design and health care interventions for people with ME/CFS.