-
1.
Exercise Training Modulates Gut Microbiota Profile and Improves Endotoxemia.
Motiani, KK, Collado, MC, Eskelinen, JJ, Virtanen, KA, Löyttyniemi, E, Salminen, S, Nuutila, P, Kalliokoski, KK, Hannukainen, JC
Medicine and science in sports and exercise. 2020;52(1):94-104
-
-
-
Free full text
-
Plain language summary
The gut microbiome differs between healthy people and those with metabolic diseases, including metabolic syndrome and type 2 diabetes (T2D) and it is suggested that this association is mediated by endotoxemia, the release of toxins, in particular lipopolysaccharides (LPS), from the gut bacteria. The aim of this study was to investigate the effects of exercise on gut microbiota composition and metabolic endotoxemia in people with prediabetes and T2D. 26 sedentary participants with either prediabetes or T2D took part in either a sprint interval training (SIT) or moderate-intensity continuous training (MICT) three times per week for two weeks. Both training types induced fat loss and improved the gut microbiota, HbA1C (a marker for whole body insulin sensitivity) as well as some markers of systemic and intestinal inflammation, although there were differences in the way the two types of exercise altered the gut bacterial composition. Only SIT improved aerobic capacity. The authors concluded that exercise training improves the gut microbiota and reduces endotoxemia.
Abstract
INTRODUCTION Intestinal metabolism and microbiota profiles are impaired in obesity and insulin resistance. Moreover, dysbiotic gut microbiota has been suggested to promote systemic low-grade inflammation and insulin resistance through the release of endotoxins particularly lipopolysaccharides. We have previously shown that exercise training improves intestinal metabolism in healthy men. To understand whether changes in intestinal metabolism interact with gut microbiota and its release of inflammatory markers, we studied the effects of sprint interval (SIT) and moderate-intensity continuous training (MICT) on intestinal metabolism and microbiota in subjects with insulin resistance. METHODS Twenty-six, sedentary subjects (prediabetic, n = 9; type 2 diabetes, n = 17; age, 49 [SD, 4] yr; body mass index, 30.5 [SD, 3]) were randomized into SIT or MICT. Intestinal insulin-stimulated glucose uptake (GU) and fatty acid uptake (FAU) from circulation were measured using positron emission tomography. Gut microbiota composition was analyzed by 16S rRNA gene sequencing and serum inflammatory markers with multiplex assays and enzyme-linked immunoassay kit. RESULTS V˙O2peak improved only after SIT (P = 0.01). Both training modes reduced systematic and intestinal inflammatory markers (tumor necrosis factor-α, lipopolysaccharide binding protein) (time P < 0.05). Training modified microbiota profile by increasing Bacteroidetes phylum (time P = 0.03) and decreasing Firmicutes/Bacteroidetes ratio (time P = 0.04). Moreover, there was a decrease in Clostridium genus (time P = 0.04) and Blautia (time P = 0.051). Only MICT decreased jejunal FAU (P = 0.02). Training had no significant effect on intestinal GU. Colonic GU associated positively with Bacteroidetes and inversely with Firmicutes phylum, ratio Firmicutes/Bacteroidetes and Blautia genus. CONCLUSIONS Intestinal substrate uptake associates with gut microbiota composition and whole-body insulin sensitivity. Exercise training improves gut microbiota profiles and reduces endotoxemia.
-
2.
The Effect of Moderate Weight Loss on a Non-Invasive Biomarker of Liver Fibrosis: A Randomised Controlled Trial.
Koutoukidis, DA, Jebb, SA, Aveyard, P, Astbury, NM
Obesity facts. 2020;13(2):144-151
-
-
-
Free full text
Plain language summary
Non-alcoholic fatty liver disease covers a range of conditions from excess fat in the liver through inflammation and fibrosis, to advanced fibrosis, and cirrhosis. The Enhanced Liver Fibrosis (ELF) score is emerging as a promising blood biomarker for fibrosis. The aim of this study was to examine whether a community weight loss programme reduces ELF score over 12 months compared with a weight-loss intervention which is less effective. This study is a secondary analysis of a published randomised controlled trial. Participants (n=73) were equally randomised to a community weight loss programme (WeightWatchers) or usual care. Results indicate that there was no evidence of an effect of a community weight loss programme on changes in the ELF score and no association between weight loss and the ELF score in people who had, on average, an ELF score compatible with moderate fibrosis. Authors conclude that using the ELF test to assess weight loss treatment efficacy in improving liver fibrosis may be of limited value, thus biopsy remains the gold-standard assessment for liver fibrosis.
Abstract
BACKGROUND Referral to weight loss programmes is the only effective treatment for non-alcoholic fatty liver disease (NAFLD). Clinicians should advise weight loss and screen for liver fibrosis using the Enhanced Liver Fibrosis (ELF) score. AIM: To examine if the ELF score changes with weight loss. DESIGN AND SETTING Randomised controlled trial (ISRCTN85485463) in UK primary care during 2007-2008. METHOD Adults with a BMI of 27-35 kg/m2 and ≥1 risk factor for obesity-related disease were randomised to attend a community weight loss programme (n = 45) or receive usual weight loss advice from a practice nurse (n = 28). Weight and the ELF score were measured at baseline and 1 year. Analysis of covariance examined mean changes in the ELF score between groups and its relationship with weight loss. RESULTS Mean (SD) BMI was 31.10 kg/m2 (2.55) with evidence of moderate levels of liver fibrosis at baseline (mean ELF score: 8.93 [0.99]). There was no evidence that the community weight loss programme reduced the ELF score compared with usual care (difference +0.13 points, 95% CI: -0.25 to 0.52) despite greater weight loss (difference: -2.66 kg, 95% CI: -5.02 to -0.30). Mean weight loss in the whole cohort was 7.8% (5.9). There was no evidence of an association between weight change and change in ELF; the coefficient for a 5% weight loss was -0.15 (95% CI: -0.30 to 0.0002). CONCLUSION We found no evidence that the ELF score changed meaningfully following moderate weight loss. Clinicians should not use the ELF score to measure improvements in NAFLD fibrosis following weight loss programmes.
-
3.
Effect of Smartphone-Based Lifestyle Coaching App on Community-Dwelling Population With Moderate Metabolic Abnormalities: Randomized Controlled Trial.
Cho, SMJ, Lee, JH, Shim, JS, Yeom, H, Lee, SJ, Jeon, YW, Kim, HC
Journal of medical Internet research. 2020;22(10):e17435
-
-
-
Free full text
Plain language summary
Metabolic disorders are established precursors to cardiovascular disease. The aim of the study was to evaluate the longitudinal effect of smartphone-based health care app on metabolic parameters in a sample of the general population with moderate metabolic abnormalities. The study is a single-blind 3-arm parallel-design randomized controlled trial delivering a 6-month primary prevention program via mobile app. One hundred twenty-nine smartphone users, aged between 30-59 years with at least 2 metabolic abnormalities, have been recruited. Results showed that the simultaneous diet/exercise logging and lifestyle coaching yielded greater body weight reduction, specifically via body fat mass reduction. On the other hand, the systolic blood pressure did not change notably between the 3 groups at any follow-up examinations. Authors conclude that future studies focusing on comparative effectiveness using alternative study designs are needed to integrate these apps in everyday lives and clinic practice.
Abstract
BACKGROUND Metabolic disorders are established precursors to cardiovascular diseases, yet they can be readily prevented with sustained lifestyle modifications. OBJECTIVE We assessed the effectiveness of a smartphone-based weight management app on metabolic parameters in adults at high-risk, yet without physician diagnosis nor pharmacological treatment for metabolic syndrome, in a community setting. METHODS In this 3-arm parallel-group, single-blind, randomized controlled trial, we recruited participants aged 30 to 59 years with at least 2 conditions defined by the Third Report of the National Cholesterol Education Program expert panel (abdominal obesity, high blood pressure, high triglycerides, low high-density lipoprotein cholesterol, and high fasting glucose level). Participants were randomly assigned (1:1:1) by block randomization to either the nonuser group (control), the app-based diet and exercise self-logging group (app only), or the app-based self-logging and personalized coaching from professional dieticians and exercise coordinators group (app with personalized coaching). Assessments were performed at baseline, week 6, week 12, and week 24. The primary outcome was change in systolic blood pressure (between baseline and follow-up assessments). Secondary outcomes were changes in diastolic blood pressure, body weight, body fat mass, waist circumference, homeostatic model of assessment of insulin resistance, triglyceride level, and high-density lipoprotein cholesterol level between baseline and follow-up assessments. Analysis was performed using intention-to-treat. RESULTS Between October 28, 2017 and May 28, 2018, 160 participants participated in the baseline screening examination. Participants (129/160, 80.6%) who satisfied the eligibility criteria were assigned to control (n=41), app only (n=45), or app with personalized coaching (n=43) group. In each group, systolic blood pressure showed decreasing trends from baseline (control: mean -10.95, SD 2.09 mmHg; app only: mean -7.29, SD 1.83 mmHg; app with personalized coaching: mean -7.19, SD 1.66 mmHg), yet without significant difference among the groups (app only: P=.19; app with personalized coaching: P=.16). Instead, those in the app with personalized coaching group had greater body weight reductions (control: mean -0.12, SD 0.30 kg; app only: mean -0.35, SD 0.36 kg, P=.67; app with personalized coaching: mean -0.96, SD 0.37 kg; P=.08), specifically by body fat mass reduction (control: mean -0.13, SD 0.34 kg; app only: mean -0.64, SD 0.38 kg, P=.22; app with personalized coaching: mean -0.79, SD 0.38 kg; P=.08). CONCLUSIONS Simultaneous diet and exercise self-logging and persistent lifestyle modification coaching were ineffective in lowering systolic blood pressure but effective in losing weight and reducing body fat mass. These results warrant future implementation studies of similar models of care on a broader scale in the context of primary prevention. TRIAL REGISTRATION ClinicalTrials.gov NCT03300271; http://clinicaltrials.gov/ct2/show/NCT03300271.
-
4.
Stratifying cellular metabolism during weight loss: an interplay of metabolism, metabolic flexibility and inflammation.
Tareen, SHK, Kutmon, M, de Kok, TM, Mariman, ECM, van Baak, MA, Evelo, CT, Adriaens, ME, Arts, ICW
Scientific reports. 2020;10(1):1651
-
-
-
Free full text
Plain language summary
Obesity is a public health concern as it has been linked to cardiovascular diseases, type 2 diabetes and metabolic syndrome. The aim of this study was to identify and analyse expression profiles of individuals clustered by cellular metabolism centring on metabolic flexibility. This study clustered gene expression samples from a weight loss study (Yoyo study’ - Clinical Trial ID: NCT01559415) into two clusters, based on 291 genes associated with cellular metabolic fexibility. The study covers two diets: a low-calorie diet (LCD) and a very low-calorie diet (VLCD). All the participants of the study were Caucasian with a BMI between 28kg/m2 and 35 kg/m2, aged between 32 and 67 years old. Findings showed that the majority of the individuals had their metabolism associated genes downregulated after weight loss and weight maintenance, but also had an upregulation of immune system associated genes. Furthermore, individuals who had changed their metabolic profiles in response to caloric restriction had a significant retention of lost weight compared to individuals which had not changed their cluster membership. Authors conclude that their findings indicate possible cross-talk between cellular metabolism and inflammation.
Abstract
Obesity is a global epidemic, contributing significantly to chronic non-communicable diseases, such as type 2 diabetes mellitus, cardiovascular diseases and metabolic syndrome. Metabolic flexibility, the ability of organisms to switch between metabolic substrates, is found to be impaired in obesity, possibly contributing to the development of chronic illnesses. Several studies have shown the improvement of metabolic flexibility after weight loss. In this study, we have mapped the cellular metabolism of the adipose tissue from a weight loss study to stratify the cellular metabolic processes and metabolic flexibility during weight loss. We have found that for a majority of the individuals, cellular metabolism was downregulated during weight loss, with gene expression of all major cellular metabolic processes (such as glycolysis, fatty acid β-oxidation etc.) being lowered during weight loss and weight maintenance. Parallel to this, the gene expression of immune system related processes involving interferons and interleukins increased. Previously, studies have indicated both negative and positive effects of post-weight loss inflammation in the adipose tissue with regards to weight loss or obesity and its co-morbidities; however, mechanistic links need to be constructed in order to determine the effects further. Our study contributes towards this goal by mapping the changes in gene expression across the weight loss study and indicates possible cross-talk between cellular metabolism and inflammation.
-
5.
Effects of Synbiotic Supplement on Human Gut Microbiota, Body Composition and Weight Loss in Obesity.
Sergeev, IN, Aljutaily, T, Walton, G, Huarte, E
Nutrients. 2020;12(1)
-
-
-
Free full text
Plain language summary
The gut microbiota plays a role in the development of obesity and associated diseases. Whilst energy-restricted, low-carbohydrate, high-protein diets can facilitate substantial weight-loss, they also have been linked to ill-effects and unfavourable changes in the gut microbiota from excess protein fermentation. Pro-and prebiotics (synbiotics) have become a promising intervention in the management of obesity. This small placebo-controlled clinical trial involved 20 obese adults following an energy-restricted (approx.950 kcal/day) low-carbohydrate, high-protein diet. The study examined whether a supplementary synbiotic contributed to additional changes in body composition and metabolic biomarkers. The synbiotic contained Lactobacilli spp. and Bifidobacteria spp. and a prebiotic mixture of galactooligosaccharides. Overall, at the end of the 3-month trial, there was no remarkable difference between the groups. Both experienced a significant and decreasing trend in body mass, waist circumference, body mass index, fat mass, fat percentage, and glucose level, affirming the known benefits of the described weight-loss diet. However, the synbiotic supplementation group had a greater decrease in HbA1C and significant alterations in gut microbiota, showing an increased abundance of gut bacteria associated with positive health effects. Due to the complexity of microbial species and host interactions, the authors advocate for more research to identify their significance and shed light on contradictory findings. This study identified that synbiotics may not contribute to additional changes in body composition when combined with an energy-restricted, low-carbohydrate, high-protein diet but they can offer additional health benefits by inducing favourable changes to the gut microbiota.
Abstract
Targeting gut microbiota with synbiotics (probiotic supplements containing prebiotic components) is emerging as a promising intervention in the comprehensive nutritional approach to reducing obesity. Weight loss resulting from low-carbohydrate high-protein diets can be significant but has also been linked to potentially negative health effects due to increased bacterial fermentation of undigested protein within the colon and subsequent changes in gut microbiota composition. Correcting obesity-induced disruption of gut microbiota with synbiotics can be more effective than supplementation with probiotics alone because prebiotic components of synbiotics support the growth and survival of positive bacteria therein. The purpose of this placebo-controlled intervention clinical trial was to evaluate the effects of a synbiotic supplement on the composition, richness and diversity of gut microbiota and associations of microbial species with body composition parameters and biomarkers of obesity in human subjects participating in a weight loss program. The probiotic component of the synbiotic used in the study contained Lactobacillus acidophilus, Bifidobacterium lactis, Bifidobacterium longum, and Bifidobacterium bifidum and the prebiotic component was a galactooligosaccharide mixture. The results showed no statistically significant differences in body composition (body mass, BMI, body fat mass, body fat percentage, body lean mass, and bone mineral content) between the placebo and synbiotic groups at the end of the clinical trial (3-month intervention, 20 human subjects participating in weight loss intervention based on a low-carbohydrate, high-protein, reduced energy diet). Synbiotic supplementation increased the abundance of gut bacteria associated with positive health effects, especially Bifidobacterium and Lactobacillus, and it also appeared to increase the gut microbiota richness. A decreasing trend in the gut microbiota diversity in the placebo and synbiotic groups was observed at the end of trial, which may imply the effect of the high-protein low-carbohydrate diet used in the weight loss program. Regression analysis performed to correlate abundance of species following supplementation with body composition parameters and biomarkers of obesity found an association between a decrease over time in blood glucose and an increase in Lactobacillus abundance, particularly in the synbiotic group. However, the decrease over time in body mass, BMI, waist circumstance, and body fat mass was associated with a decrease in Bifidobacterium abundance. The results obtained support the conclusion that synbiotic supplement used in this clinical trial modulates human gut microbiota by increasing abundance of potentially beneficial microbial species.
-
6.
Diet-induced weight loss alters hepatic glucocorticoid metabolism in type 2 diabetes mellitus.
Stomby, A, Otten, J, Ryberg, M, Andrew, R, Walker, BR, Olsson, T
European journal of endocrinology. 2020;182(4):447-457
-
-
-
Free full text
-
Plain language summary
Cushing syndrome is caused by an overexposure to cortisol and associated with abdominal adiposity, hypertension, dyslipidaemia, insulin resistance and type 2 diabetes mellitus (T2DM), and therefore bears similarities with metabolic syndrome and obesity. Whilst circulating cortisol levels are normal or slightly decreased in obese individuals, they tend to be increased in T2DM. The aim of this study was to investigate associations between obesity and T2DM measures and glucocorticoid metabolism, and any possible effects of a palaeolithic diet (PD) with or without exercise. In this single-blind study (investigators examining patients were blind to intervention), 28 patients with overweight or obesity and T2DM were randomised to either a PD alone or combined with a structured resistance and aerobic exercise programme for 12 weeks. The PD was based on a high intake of vegetables, fruit, lean meat, nuts, egg, fish and seafood, whilst grains, sugar, salt, dairy products and refined fats were reduced. Body mass index, waist circumference, glycaemic control, liver and systemic insulin sensitivity improved in both groups with no statistically significant difference between groups. There was no association between insulin sensitivity and indices of tissue specific glucocorticoid metabolism. PD with and without exercise was associated with increased conversion of the inactive cortisone to the active cortisol through increased activity of the conversion enzyme in the liver, but not with increased urinary excretion of glucocorticoid metabolites. The authors concluded that the results suggests that dysregulation of liver glucocorticoid metabolism in these patients is a consequence rather than a cause of metabolic dysfunction.
Abstract
CONTEXT Altered tissue-specific glucocorticoid metabolism has been described in uncomplicated obesity and type 2 diabetes. We hypothesized that weight loss induced by diet and exercise, which has previously been shown to reverse abnormal cortisol metabolism in uncomplicated obesity, also normalizes cortisol metabolism in patients with type 2 diabetes. OBJECTIVE Test the effects of a diet intervention with added exercise on glucocorticoid metabolism. DESIGN Two groups followed a Paleolithic diet (PD) for 12 weeks with added 180 min of structured aerobic and resistance exercise per week in one randomized group (PDEX). SETTING Umeå University Hospital. PARTICIPANTS Men and women with type 2 diabetes treated with lifestyle modification ± metformin were included. Twenty-eight participants (PD, n = 15; PDEX, n = 13) completed measurements of glucocorticoid metabolism. MAIN OUTCOME MEASURES Changes in glucocorticoid metabolite levels in 24-h urine samples, expression of HSD11B1 mRNA in s.c. adipose tissue and conversion of orally administered cortisone to cortisol measured in plasma. Body composition and insulin sensitivity were measured using a hyperinsulinemic-euglycemic clamp, and liver fat was measured by magnetic resonance spectroscopy. RESULTS Both groups lost weight and improved insulin sensitivity. Conversion of orally taken cortisone to plasma cortisol and the ratio of 5α-THF + 5β-THF/THE in urine increased in both groups. CONCLUSIONS These interventions caused weight loss and improved insulin sensitivity with concomitant increases in the conversion of cortisone to cortisol, which is an estimate of hepatic HSD11B1 activity. This suggests that dysregulation of liver glucocorticoid metabolism in these patients is a consequence rather than a cause of metabolic dysfunction.
-
7.
Effects of Fecal Microbiome Transfer in Adolescents With Obesity: The Gut Bugs Randomized Controlled Trial.
Leong, KSW, Jayasinghe, TN, Wilson, BC, Derraik, JGB, Albert, BB, Chiavaroli, V, Svirskis, DM, Beck, KL, Conlon, CA, Jiang, Y, et al
JAMA network open. 2020;3(12):e2030415
-
-
-
Free full text
-
Plain language summary
Obesity has become a global pandemic even in adolescents. Lifestyle interventions have had limited impact on this cohort and drugs targeting obesity are often unlicensed in children. The gut microbiome has a role in weight regulation and may be a new target in adolescents with obesity. This randomised control trial of 87 adolescents with obesity over 26 weeks, aimed to assess if faecal microbiome transfer (FMT), which is a method whereby faecal matter is transplanted from one person to another, can be used to treat obesity. The results showed that FMT did not have an effect on body mass index (BMI) and the intervention group had a marginally increased BMI after FMT. Other disorders associated with obesity such as blood sugar levels were also unaffected by FMT, however there was a reduction in fat storage around the middle. It was concluded that FMT alone is not adequate to improve obesity in adolescents, but may reduce fat stored around the middle. Healthcare professionals could use this study to understand that simply transplanting one person’s gut microbiome to another, may not be enough. Targeted personalised approaches may be required, however further research is needed.
Abstract
Importance: Treatment of pediatric obesity is challenging. Preclinical studies in mice indicated that weight and metabolism can be altered by gut microbiome manipulation. Objective: To assess efficacy of fecal microbiome transfer (FMT) to treat adolescent obesity and improve metabolism. Design, Setting, and Participants: This randomized, double-masked, placebo-controlled trial (October 2017-March 2019) with a 26-week follow-up was conducted among adolescents aged 14 to 18 years with a body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) of 30 or more in Auckland, New Zealand. A total of 87 individuals took part-565 individuals responded to advertisements, 328 were ineligible, and 150 declined participation. Clinical data were analyzed from September 2019 to May 2020. Interventions: Single course of oral encapsulated fecal microbiome from 4 healthy lean donors of the same sex or saline placebo. Main Outcomes and Measures: Primary outcome was BMI standard deviation score at 6 weeks using intention-to-treat analysis. Secondary outcomes included body composition, cardiometabolic parameters, well-being, and gut microbiome composition. Results: Eighty-seven participants (59% female adolescents, mean [SD] age 17.2 [1.4] years) were randomized 1:1, in groups stratified by sex, to FMT (42 participants) or placebo (45 participants). There was no effect of FMT on BMI standard deviation score at 6 weeks (adjusted mean difference [aMD] -0.026; 95% CI -0.074, 0.022). Reductions in android-to-gynoid-fat ratio in the FMT vs placebo group were observed at 6, 12, and 26 weeks, with aMDs of -0.021 (95% CI, -0.041 to -0.001), -0.023 (95% CI, -0.043 to -0.003), and -0.029 (95% CI, -0.049 to -0.008), respectively. There were no observed effects on insulin sensitivity, liver function, lipid profile, inflammatory markers, blood pressure, total body fat percentage, gut health, and health-related quality of life. Gut microbiome profiling revealed a shift in community composition among the FMT group, maintained up to 12 weeks. In post-hoc exploratory analyses among participants with metabolic syndrome at baseline, FMT led to greater resolution of this condition (18 to 4) compared with placebo (13 to 10) by 26 weeks (adjusted odds ratio, 0.06; 95% CI, 0.01-0.45; P = .007). There were no serious adverse events recorded throughout the trial. Conclusions and Relevance: In this randomized clinical trial of adolescents with obesite, there was no effect of FMT on weight loss in adolescents with obesity, although a reduction in abdominal adiposity was observed. Post-hoc analyses indicated a resolution of undiagnosed metabolic syndrome with FMT among those with this condition. Further trials are needed to confirm these results and identify organisms and mechanisms responsible for mediating the observed benefits. Trial Registration: Australian New Zealand Clinical Trials Registry Identifier: ACTRN12615001351505.
-
8.
Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial.
Roager, HM, Vogt, JK, Kristensen, M, Hansen, LBS, Ibrügger, S, Mærkedahl, RB, Bahl, MI, Lind, MV, Nielsen, RL, Frøkiær, H, et al
Gut. 2019;68(1):83-93
-
-
-
Free full text
-
Plain language summary
Whole grain consumption has been linked with decreased risk of lifestyle-related diseases. While animal studies have shown the gut microbiome to be a mediator of metabolic health, human studies examining the effect of whole grain intake of the gut remain inconclusive. The aim of this study was to investigate the effects of a whole grain diet on the gut microbiome, gut functionality and biomarkers of metabolic health. In this randomised, controlled, crossover study, 50 participants completed two 8-week dietary intervention periods comprising of a whole grain diet and a refined grain diet with a 6-week washout period. Examinations were done at the beginning and end of each intervention period to assess anthropometry and various plasma and gut markers. This study found that a whole grain diet as compared with a refined grain diet reduced energy intake and body weight as well as circulating markers of inflammation. Contrary to the hypothesis, these benefits were all observed independent of changes in the gut microbiome. Based on these results, the authors conclude higher intake of whole grains should be recommended to those at risk of inflammation-related disease.
Abstract
OBJECTIVE To investigate whether a whole grain diet alters the gut microbiome and insulin sensitivity, as well as biomarkers of metabolic health and gut functionality. DESIGN 60 Danish adults at risk of developing metabolic syndrome were included in a randomised cross-over trial with two 8-week dietary intervention periods comprising whole grain diet and refined grain diet, separated by a washout period of ≥6 weeks. The response to the interventions on the gut microbiome composition and insulin sensitivity as well on measures of glucose and lipid metabolism, gut functionality, inflammatory markers, anthropometry and urine metabolomics were assessed. RESULTS 50 participants completed both periods with a whole grain intake of 179±50 g/day and 13±10 g/day in the whole grain and refined grain period, respectively. Compliance was confirmed by a difference in plasma alkylresorcinols (p<0.0001). Compared with refined grain, whole grain did not significantly alter glucose homeostasis and did not induce major changes in the faecal microbiome. Also, breath hydrogen levels, plasma short-chain fatty acids, intestinal integrity and intestinal transit time were not affected. The whole grain diet did, however, compared with the refined grain diet, decrease body weight (p<0.0001), serum inflammatory markers, interleukin (IL)-6 (p=0.009) and C-reactive protein (p=0.003). The reduction in body weight was consistent with a reduction in energy intake, and IL-6 reduction was associated with the amount of whole grain consumed, in particular with intake of rye. CONCLUSION Compared with refined grain diet, whole grain diet did not alter insulin sensitivity and gut microbiome but reduced body weight and systemic low-grade inflammation. TRIAL REGISTRATION NUMBER NCT01731366; Results.
-
9.
The Effect of a Multidisciplinary Lifestyle Intervention on Obesity Status, Body Composition, Physical Fitness, and Cardiometabolic Risk Markers in Children and Adolescents with Obesity.
Seo, YG, Lim, H, Kim, Y, Ju, YS, Lee, HJ, Jang, HB, Park, SI, Park, KH
Nutrients. 2019;11(1)
-
-
-
Free full text
Plain language summary
Children and adolescents with obesity are at a high risk of being obese in adulthood. The aim of this study was to develop a multidisciplinary lifestyle intervention program targeted at children and adolescents with moderate to severe obesity. The study is based on the Intervention for Childhood and Adolescents Obesity via Activity and Nutrition (ICAAN) – quasi-experimental intervention trial - which recruited 103 participants aged between 6 and sixteen years (63 were boys and 40 girls). The study was based on 2 active treatment groups (usual care group vs exercise group) receiving a 16-week intervention program. Results indicate that children and adolescents with obesity can achieve positive effects on body composition, physical fitness, and cardiometabolic markers, particularly with the exercise intervention. Authors conclude that the moderate-intensity multidisciplinary lifestyle intervention program they developed, can be sustained in the real-world setting and it is applicable to both moderate and severe obesity.
Abstract
This study aimed to develop a multidisciplinary lifestyle intervention program targeted at children and adolescents with moderate to severe obesity, and assess the additional effects of exercise intervention when compared to usual care. Overall, the 103 enrolled participants were ≥85th percentile of age and sex-specific body mass index (BMI). Participants were divided into groups that received 16 weeks of either usual care or exercise intervention. The BMI z-score of the overall completers decreased by about 0.05 after the 16-week intervention (p = 0.02). After the intervention, only the exercise group had a significantly lower BMI z-score than the baseline score by about 0.1 (p = 0.03), but no significant group by time interaction effects were observed. At the 16-week follow-up, significant group by time interaction effects were observed in percentage body fat (%BF) (β = -1.52, 95%CI = -2.58⁻-0.45), lean body mass (LM) (β = 1.20, 95%CI = 0.12⁻2.29), diastolic blood pressure (β = -5.24, 95%CI = -9.66⁻-0.83), high-sensitivity C-reactive protein (β = -1.67, 95%CI = -2.77⁻-1.01), and wall sit test score (β = 50.74, 95%CI = 32.30⁻69.18). We developed a moderate-intensity intervention program that can be sustained in the real-world setting and is practically applicable to both moderate and severe obesity. After interventions, the exercise group had lower %BF and cardiometabolic risk markers, and higher LM and leg muscle strength compared to the usual care group.
-
10.
A Randomized, Controlled Trial of Vitamin D Supplementation on Cardiovascular Risk Factors, Hormones, and Liver Markers in Women with Polycystic Ovary Syndrome.
Javed, Z, Papageorgiou, M, Deshmukh, H, Kilpatrick, ES, Mann, V, Corless, L, Abouda, G, Rigby, AS, Atkin, SL, Sathyapalan, T
Nutrients. 2019;11(1)
-
-
-
Free full text
Plain language summary
Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting more than 10% of women of reproductive age and is associated with an increase in cardiovascular risk factors, metabolic syndrome, cardiovascular diseases and non-alcoholic fatty liver disease (NAFLD). The aim of this double-blind, randomized, placebo-controlled study was to explore the effects of vitamin D supplementation on cardiovascular risk factors, hormones, glucose metabolism and markers of liver injury and fibrosis in overweight and obese vitamin D deficient women with PCOS. 40 participants were randomised to take either 3200iu vitamin D or placebo daily for 3 months. Vitamin D levels significantly increased over the three months in both groups but statistically significantly more so in women receiving vitamin D compared to placebo. Women receiving vitamin D had normal vitamin D levels after three months of supplementation whilst women in the placebo group remained within the insufficiency range. The only significant improvement that was statistically significantly better in the vitamin D group compared to placebo group was a decrease in alanine transaminase (ALT, a marker of liver function). Weak improvements in insulin sensitivity and liver fibrosis markers were also observed but these were not statistically significantly better than in the placebo group.
Abstract
Polycystic ovary syndrome (PCOS) increases the risk of metabolic syndrome and non-alcoholic-fatty-liver disease (NAFLD). Vitamin D supplementation may exert positive effects on liver biochemistry in patients with NAFLD; however, its effects on PCOS are unknown. This randomized, double-blind, placebo-controlled study explored the effect of vitamin D supplementation on cardiovascular risk factors (high-sensitivity C-reactive protein (hs-CRP), weight, body mass index (BMI), lipid profile, glucose levels, insulin levels, the homeostatic model assessment-insulin resistance (HOMA-IR), hormones (free androgen index (FAI), testosterone, sex hormone binding globulin (SHBG), and liver markers (alanine aminotransferase (ALT), hyaluronic acid (HA), N-terminal pro-peptide of type III procollagen (PIIINP), tissue inhibitor of metallo-proteinases-1 (TIMP-1), and the enhanced liver fibrosis (ELF) score). Forty women with PCOS were recruited and randomized to vitamin D (3200 IU) or placebo daily for 3 months. All outcomes were measured at baseline and 3 months follow-up (FU). Greater increases in vitamin D levels were shown in the supplementation group (vitamin D, baseline: 25.6 ± 11.4 nmol/L, FU: 90.4 ± 19.5 nmol/L vs. placebo, baseline: 30.9 ± 11.1 nmol/L, FU: 47.6 ± 20.5 nmol/L, p < 0.001). Between groups comparisons (% baseline change) revealed significant differences in ALT (p = 0.042) and a weak effect indicating a greater reduction in the HOMA-IR in the vitamin D group (p = 0.051). No further between group differences were seen in other cardiovascular risk factor, liver markers, or hormones. This study supports beneficial effects of vitamin D supplementation on liver markers and modest improvements in insulin sensitivity in vitamin D deficient women with PCOS.