The peptide-binding specificity of HLA-A*3001 demonstrates membership of the HLA-A3 supertype.

Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Panum 18.3.12, Blegdamsvej 3B, 2200, Copenhagen, Denmark. k.lamberth@immi.ku.dk

Immunogenetics. 2008;(11):633-43
Full text from:

Abstract

Human leukocyte antigen class I (HLA-I) molecules are highly polymorphic peptide receptors, which select and present endogenously derived peptide epitopes to CD8+ cytotoxic T cells (CTL). The specificity of the HLA-I system is an important component of the overall specificity of the CTL immune system. Unfortunately, the large and rapidly increasing number of known HLA-I molecules seriously complicates a comprehensive analysis of the specificities of the entire HLA-I system (as of June 2008, the international HLA registry holds >1,650 unique HLA-I protein entries). In an attempt to reduce this complexity, it has been suggested to cluster the different HLA-I molecules into "supertypes" of largely overlapping peptide-binding specificities. Obviously, the HLA supertype concept is only valuable if membership can be assigned with reasonable accuracy. The supertype assignment of HLA-A*3001, a common HLA haplotype in populations of African descent, has variously been assigned to the A1, A3, or A24 supertypes. Using a biochemical HLA-A*3001 binding assay, and a large panel of nonamer peptides and peptide libraries, we here demonstrate that the specificity of HLA-A*3001 most closely resembles that of the HLA-A3 supertype. We discuss approaches to supertype assignment and underscore the importance of experimental verification.