[Influence of membrane-active polyanions on various stages of the human cytomegalovirus life cycle in vitro].

Antibiotiki i khimioterapiia = Antibiotics and chemoterapy [sic]. 2008;(11-12):3-10

Abstract

Human cytomegalovirus (CMV), an agent of infection (CMVI), lethally dangerous for immune deficient neonates and adults was investigated in vitro as a target for a therapeutic effect of new membrane-active polyanionic compounds (MPC). Previous studies on the alicycle- and sulfate-modified carboxy-MPCs revealed a well-defined tendency of the anti-CMV activity amplification in parallel with increasing of the content of sulfate groups, enhancing the negative charge of the macromolecule. The dominating role of the electrostatic factor was confirmed by the highest activity of AS-688, compound with maximum sulfation among the tested MPCs. Its selectivity index (SI) of the CMVI inhibition in human diploid fibroblast cells reached 5450, 7500, 250 and 4286 in the microbicidal, viricidal, prophylactic and therapeutic schemes of the experiment respectively. The antiviral activity at the first, second and third schemes was explained by the polyanion-typical potential of electrostatic neutralization of the countercharged virions and prevention of the virus adsorption on the cell membranes (in competition with heparin sulfate, a cellular receptor of CMV), whereas the therapeutic effect required the ability of MPC to influence the intracellular stages of the CMV life cycle. The PCR and immunochemical assays revealed an inhibitory action of AS-688 on replication of the viral DNA and the following synthesis of the late viral protein gB with efficiency similar to that of gancyclovir (GCV). However, in contrast to GCV, acting as inhibitor of enzyme (viral RNA-polymerase) factor of the biosynthesis, the therapeutic activity of MPC could be interpreted by competition with viral RNA/DNA due to the specific character of the MPC molecular basis, initially constructed on the principle of nucleic acids backbone and charge adjustable imitation. This mechanism assuming reduction of the cytotoxicity risks, explained the experimentally observed fact of low cytotoxicity of MPCs and possible achievement of high SI. The MPC ability to penetrate into the cells without disruption of cellular membrane permeability was confirmed in experiments with the fluorescent-labeled derivate AS-679, structurally and functionally related to AS-688. In the light of the previously described HIV inhibiting properties of AS-688, AS-679 and MPC analogous, the results could be considered prospective in development of new highly effective agents for combined antiviral protection.