Oral ibuprofen differentially affects plasma and sweat lipid mediator profiles in healthy adult males.

Department of Nutrition, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; West Coast Metabolomics Center, Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA. Electronic address: kaagrawal@ucdavis.edu. West Coast Metabolomics Center, Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA. Electronic address: remy.bosviel@gmail.com. Arkansas Children's Nutrition Center, 15 Children's Way, Little Rock, AR 72202, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, AR 72205, USA. Electronic address: bdpiccolo@uams.edu. Department of Nutrition, University of California Davis, One Shields Avenue, Davis, CA 95616, USA; West Coast Metabolomics Center, Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA; Obesity and Metabolism Research Unit, Western Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, 430 W Health Sciences Drive, Davis, CA 95616, USA. Electronic address: john.newman@ars.usda.gov.

Prostaglandins & other lipid mediators. 2018;:1-8

Abstract

Sweat contains a variety of lipid mediators, but whether they originate from the plasma filtrate or from the cutaneous sweat glandular tissues themselves is unknown. To explore this knowledge gap, we collected plasma and sweat from healthy men (n = 9) immediately before and 0.5, 2 and 4 h after oral administration of 400 mg ibuprofen. Of the over 100 lipid mediators assayed by liquid chromatography-tandem mass spectrometry, ∼45 were detected in both plasma and sweat, and 36 were common to both matrices. However, baseline concentrations in each matrix were not correlated and metabolite relative abundances between matrices differed. Oral ibuprofen administration altered sweat lipid mediators, reducing prostaglandin E2, linoleoylethanolamide, and oleoylethanolamide, while increasing 11-hydroxyeicosatetraenoic acid, and causing transient changes in 9-nitrooleate, N-arachidonylglycine and 20-hydroxyeicosatetraenoic acid. Meanwhile, plasma N-acylethanolamide concentrations increased with ibuprofen administration. These results suggest that sweat and plasma differentially reflect biochemical changes due to oral ibuprofen administration, and that plasma is unlikely to be the predominant source of the sweat lipid mediator profile.

Methodological quality

Publication Type : Clinical Trial

Metadata

MeSH terms : Ibuprofen ; Lipid Metabolism ; Lipids ; Sweat