Effects of Oral Contraception and Lifestyle Modification on Incretins and TGF-ß Superfamily Hormones in PCOS.

Department of Obstetrics and GynecologyPenn State College of Medicine, Hershey, PA. Department of Public Health SciencesPenn State College of Medicine, Hershey, PA. Department of Nutritional Sciences, Penn State College of Medicine, Hershey, PA. Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA. Center for Obesity Research and Education, College of Public Health, Temple University, Philadelphia, PA. Penn State College of Health and Human Development, University Park, PA. Department of Pathology, Massachusetts General Hospital, Boston, MA TX. Department of Obstetrics and Gynecology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.

The Journal of clinical endocrinology and metabolism. 2021;(1):108-119

Abstract

OBJECTIVE To examine the effects of common treatments for polycystic ovary syndrome (PCOS) on a panel of hormones (reproductive/metabolic). DESIGN Secondary analysis of blood from a randomized controlled trial of three 16-week preconception interventions designed to improve PCOS-related abnormalities: continuous oral contraceptive pills (OCPs, N = 34 subjects), intensive lifestyle modification (Lifestyle, N = 31), or a combination of both (Combined, N = 29). MATERIALS AND METHODS Post-treatment levels of activin A and B, inhibin B, and follistatin (FST), as well as Insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 2 (IGFBP-2), glucagon, glucagon-like peptide 1 (GLP-1) and 2, and oxyntomodulin were compared to baseline, and the change from baseline in these parameters were correlated with outcomes. RESULTS Oral contraceptive pill use was associated with a significant suppression in activin A, inhibin A, and anti-mullerian hormone (AMH), but a significant increase in FST. IGF-1, IGFBP-2, glucagon, and GLP-2 levels were significantly decreased. Oxyntomodulin was profoundly suppressed by OCPs (ratio of geometric means: 0.09, 95% confidence interval [CI]: 0.05, 0.18, P < 0.001). None of the analytes were significantly affected by Lifestyle, whereas the effects of Combined were similar to OCPs alone, although attenuated. Oxyntomodulin was significantly positively associated with the change in total ovarian volume (rs = 0.27; 95% CI: 0.03, 0.48; P = 0.03) and insulin sensitivity index (rs = 0.48; 95% CI: 0.27, 0.64; P < 0.001), and it was inversely correlated with change in area under the curve (AUC) glucose [rs = -0.38; 95% CI: -0.57, -0.16; P = 0.001]. None of the hormonal changes were associated with live birth, only Activin A was associated with ovulation (risk ratio per 1 ng/mL increase in change in Activin A: 6.0 [2.2, 16.2]; P < 0.001). CONCLUSIONS In women with PCOS, OCPs (and not Lifestyle) affect a wide variety of reproductive/metabolic hormones, but their treatment response does not correlate with live birth.

Methodological quality

Metadata

MeSH terms : Hormones