Temporal changes in soluble angiotensin-converting enzyme 2 associated with metabolic health, body composition, and proteome dynamics during a weight loss diet intervention: a randomized trial with implications for the COVID-19 pandemic.

Stanford Cardiovascular Institute, Department of Medicine, Stanford University, Stanford, CA, USA. Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium. Sean N Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA. Department of Medicine, Stanford University, Stanford, CA, USA. Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. Department of Biochemistry, The Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA. Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH, USA. Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA. Stanford Prevention Research Center, Department of Medicine, Stanford University, Stanford, CA, USA.

The American journal of clinical nutrition. 2021;(5):1655-1665

Abstract

BACKGROUND Angiotensin-converting enzyme 2 (ACE2) serves protective functions in metabolic, cardiovascular, renal, and pulmonary diseases and is linked to COVID-19 pathology. The correlates of temporal changes in soluble ACE2 (sACE2) remain understudied. OBJECTIVES We explored the associations of sACE2 with metabolic health and proteome dynamics during a weight loss diet intervention. METHODS We analyzed 457 healthy individuals (mean ± SD age: 39.8 ± 6.6 y) with BMI 28-40 kg/m2 in the DIETFITS (Diet Intervention Examining the Factors Interacting with Treatment Success) study. Biochemical markers of metabolic health and 236 proteins were measured by Olink CVDII, CVDIII, and Inflammation I arrays at baseline and at 6 mo during the dietary intervention. We determined clinical and routine biochemical correlates of the diet-induced change in sACE2 (ΔsACE2) using stepwise linear regression. We combined feature selection models and multivariable-adjusted linear regression to identify protein dynamics associated with ΔsACE2. RESULTS sACE2 decreased on average at 6 mo during the diet intervention. Stronger decline in sACE2 during the diet intervention was independently associated with female sex, lower HOMA-IR and LDL cholesterol at baseline, and a stronger decline in HOMA-IR, triglycerides, HDL cholesterol, and fat mass. Participants with decreasing HOMA-IR (OR: 1.97; 95% CI: 1.28, 3.03) and triglycerides (OR: 2.71; 95% CI: 1.72, 4.26) had significantly higher odds for a decrease in sACE2 during the diet intervention than those without (P ≤ 0.0073). Feature selection models linked ΔsACE2 to changes in α-1-microglobulin/bikunin precursor, E-selectin, hydroxyacid oxidase 1, kidney injury molecule 1, tyrosine-protein kinase Mer, placental growth factor, thrombomodulin, and TNF receptor superfamily member 10B. ΔsACE2 remained associated with these protein changes in multivariable-adjusted linear regression. CONCLUSIONS Decrease in sACE2 during a weight loss diet intervention was associated with improvements in metabolic health, fat mass, and markers of angiotensin peptide metabolism, hepatic and vascular injury, renal function, chronic inflammation, and oxidative stress. Our findings may improve the risk stratification, prevention, and management of cardiometabolic complications.This trial was registered at clinicaltrials.gov as NCT01826591.

Methodological quality

Publication Type : Randomized Controlled Trial

Metadata