-
1.
Sleep, Stress, and Symptoms Among People With Heart Failure During the COVID-19 Pandemic.
O'Connell, M, Jeon, S, Conley, S, Linsky, S, Redeker, NS
The Journal of cardiovascular nursing. 202301;38(2):E55-E60
-
-
-
Free full text
-
Plain language summary
COVID-19 pandemic raised concerns about the effects of stress on mental health and sleep deficiency. Cognitive behavioural therapy for insomnia (CBT-I) has been shown to improve sleep quality and insomnia severity, as well as anxiety and depression, and may be protective during times of stress, including the COVID-19 pandemic. The aim of this study was to examine changes in sleep, sleep-related cognitions, stress, anxiety, and depression among people with heart failure (HF). This study was a randomised controlled trial of the effects of CBT-I compared with HF self-management education (attention-control condition), the “HeartSleep Study.” Results showed that improvements in insomnia severity, sleep quality, latency, and efficiency, sleep-related cognitions and stress, anxiety, and depression after participation in CBT-I or an HF self-management class were sustained during the pandemic. Authors conclude that their findings confirm the clinical benefits of CBT-I for people with HF and comorbidities and also suggest the potential benefits of HF self-management education.
Abstract
BACKGROUND The COVID-19 pandemic raised concerns about the effects of stress on sleep and mental health, particularly among people with chronic conditions, including people with heart failure (HF). OBJECTIVE The aim of this study was to examine changes in sleep, sleep-related cognitions, stress, anxiety, and depression among people with HF who participated in a randomized controlled trial of cognitive behavioral therapy for insomnia before the COVID-19 pandemic. METHODS Participants self-reported sleep characteristics, symptoms, mood, and stress at baseline, 6 months after cognitive behavioral therapy for insomnia or HF self-management education (attention control), and during the pandemic. RESULTS The sample included 112 participants (mean age, 63 ± 12.9 years; 47% women; 13% Black; 68% New York Heart Association class II or III). Statistically significant improvements in sleep, stress, mood, and symptoms that occurred 6 months post treatment were sustained during the pandemic. CONCLUSIONS Improving sleep and symptoms among people with HF may improve coping during stressful events, and cognitive behavioral therapy for insomnia may be protective.
-
2.
Advances in the biosynthesis of tetraacetyl phytosphingosine, a key substrate of ceramides.
Zhang, X, Zhang, X, Lin, L, Wang, K, Ji, XJ
Synthetic and systems biotechnology. 2025;(1):1-9
Abstract
Ceramides, formed by the dehydration of long-chain fatty acids with phytosphingosine and its derivatives, are widely used in skincare, cosmetics, and pharmaceuticals. Due to the exceedingly low concentration of phytosphingosine in plant seeds, relying on the extraction method is highly challenging. Currently, the primary method for obtaining phytosphingosine is the deacetylation of tetraacetyl phytosphingosine (TAPS) derived from fermentation. Wickerhamomyces ciferrii, an unconventional yeast from the pods of Dipteryx odorata, is the only known microorganism capable of naturally secreting TAPS, which is of great industrial value. In recent years, research and applications focused on modifying W. ciferrii for TAPS overproduction have increased rapidly. This review first describes the discovery history, applications, microbial synthesis pathway of TAPS. Research progress in using haploid breeding, mutagenesis breeding, and metabolic engineering to improve TAPS production is then summarized. In addition, the future prospects of TAPS production using the W. ciferrii platform are discussed in light of the current progress, challenges, and trends in this field. Finally, guidelines for future researches are also emphasized.
-
3.
Nitrogen-cycling processes under long-term compound heavy metal(loids) pressure around a gold mine: Stimulation of nitrite reduction.
Hu, X, Liu, X, Zhang, S, Yu, C
Journal of environmental sciences (China). 2025;:571-581
Abstract
Mining and tailings deposition can cause serious heavy metal(loids) pollution to the surrounding soil environment. Soil microorganisms adapt their metabolism to such conditions, driving alterations in soil function. This study aims to elucidate the response patterns of nitrogen-cycling microorganisms under long-term heavy metal(loids) exposure. The results showed that the diversity and abundance of nitrogen-cycling microorganisms showed negative feedback to heavy metal(loids) concentrations. Denitrifying microorganisms were shown to be the dominant microorganisms with over 60% of relative abundance and a complex community structure including 27 phyla. Further, the key bacterial species in the denitrification process were calculated using a random forest model, where the top three key species (Pseudomonas stutzei, Sphingobium japonicum and Leifsonia rubra) were found to play a prominent role in nitrite reduction. Functional gene analysis and qPCR revealed that nirK, which is involved in nitrite reduction, significantly accumulated in the most metal-rich soil with the increase of absolute abundance of 63.86%. The experimental results confirmed that the activity of nitrite reductase (Nir) encoded by nirK in the soil was increased at high concentrations of heavy metal(loids). Partial least squares-path model identified three potential modes of nitrite reduction processes being stimulated by heavy metal(loids), the most prominent of which contributed to enhanced nirK abundance and soil Nir activity through positive stimulation of key species. The results provide new insights and preliminary evidence on the stimulation of nitrite reduction processes by heavy metal(loids).
-
4.
Novel catalytic behavior of defective nanozymes with catalase-mimicking characteristics for the degradation of tetracycline.
Yang, W, Gong, W, Zhu, L, Ma, X, Xu, W
Journal of colloid and interface science. 2025;(Pt B):952-966
Abstract
Although nanozymes have shown significant potential in wastewater treatment, enhancing their degradation performance remains challenging. Herein, a novel catalytic behavior was revealed for defective nanozymes with catalase-mimicking characteristics that efficiently degraded tetracycline (TC) in wastewater. Hydroxyl groups adsorbed on defect sites facilitated the in-situ formation of vacancies during catalysis, thereby replenishing active sites. Additionally, electron transfer considerably enhanced the catalytic reaction. Consequently, numerous reactive oxygen species (ROS) were generated through these processes and subsequent radical reactions. The defective nanozymes, with their unique catalytic behavior, proved effective for the catalytic degradation of TC. Experimental results demonstrate that •OH, •O2-, 1O2 and e- were the primary contributors to the degradation process. In real wastewater samples, the normalized degradation rate constant for defective nanozymes reached 26.0 min-1 g-1 L, exceeding those of other catalysts. This study reveals the new catalytic behavior of defective nanozymes and provides an effective advanced oxidation process for the degradation of organic pollutants.
-
5.
From Muscle-Based Nonshivering Thermogenesis to Malignant Hyperthermia in Mammals.
Launikonis, BS, Murphy, RM
Annual review of physiology. 2025
Abstract
For physiological processes in the vital organs of eutherian mammals to function, it is important to maintain constant core body temperature at ∼37°C. Mammals generate heat internally by thermogenesis. The focus of this review is on heat generated in resting skeletal muscles, using the same cellular components that muscles use to regulate cytoplasmic calcium concentrations [Ca2+] and contraction. Key to this process, known as muscle-based nonshivering thermogenesis (MB-NST), are tiny Ca2+ movements and associated ATP turnover coordinated by the plasma membrane, sarcoplasmic reticulum (SR), and the mitochondria. MB-NST has made mammals with gain-of-function SR ryanodine receptor (RyR) variants vulnerable to excessive heat generation that can be potentially lethal, known as malignant hyperthermia. Studies of RyR variants using recently developed techniques have advanced our understanding of MB-NST.
-
6.
Mn/S diatomic sites in C3N4 to enhance O2 activation for photocatalytic elimination of emerging pollutants.
Sui, C, Nie, Z, Xie, X, Wang, Y, Kong, L, Ni, SQ, Zhan, J
Journal of environmental sciences (China). 2025;:512-523
Abstract
Oxygen activation leading to the generation of reactive oxygen species (ROS) is essential for photocatalytic environmental remediation. The limited efficiency of O2 adsorption and reductive activation significantly limits the production of ROS when employing C3N4 for the degradation of emerging pollutants. Doping with metal single atoms may lead to unsatisfactory efficiency, due to the recombination of photogenerated electron-hole pairs. Here, Mn and S single atoms were introduced into C3N4, resulting in the excellent photocatalytic performances. Mn/S-C3N4 achieved 100% removal of bisphenol A, with a rate constant 11 times that of pristine C3N4. According to the experimental results and theoretical simulations, S-atoms restrict holes, facilitating the photo-generated carriers' separation. Single-atom Mn acts as the O2 adsorption site, enhancing the adsorption and activation of O2, resulting the generation of ROS. This study presents a novel approach for developing highly effective photocatalysts that follows a new mechanism to eliminate organic pollutants from water.
-
7.
Quantitative analysis of soil potassium by near-infrared (NIR) spectroscopy combined with a three-step progressive hybrid variable selection strategy.
Du, X, Chen, H, Xie, J, Li, L, Cai, K, Meng, F
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2025;:124998
Abstract
Soil potassium is a crucial nutrient element necessary for crop growth, and its efficient measurement has become essential for developing rational fertilization plans and optimizing crop growth benefits. At present, data mining technology based on near-infrared (NIR) spectroscopy analysis has proven to be a powerful tool for real-time monitoring of soil potassium content. However, as technology and instruments improve, the curse of the dimensionality problem also increases accordingly. Therefore, it is urgent to develop efficient variable selection methods suitable for NIR spectroscopy analysis techniques. In this study, we proposed a three-step progressive hybrid variable selection strategy, which fully leveraged the respective strengths of several high-performance variable selection methods. By sequentially equipping synergy interval partial least squares (SiPLS), the random forest variable importance measurement (RF(VIM)), and the improved mean impact value algorithm (IMIV) into a fusion framework, a soil important potassium variable selection method was proposed, termed as SiPLS-RF(VIM)-IMIV. Finally, the optimized variables were fitted into a partial least squares (PLS) model. Experimental results demonstrated that the PLS model embedded with the hybrid strategy effectively improved the prediction performance while reducing the model complexity. The RMSET and RT on the test set were 0.01181% and 0.88246, respectively, better than the RMSET and RT of the full spectrum PLS, SiPLS, and SiPLS-RF(VIM) methods. This study demonstrated that the hybrid strategy established based on the combination of NIR spectroscopy data and the SiPLS-RF(VIM)-IMIV method could quantitatively analyze soil potassium content levels and potentially solve other issues of data-driven soil dynamic monitoring.
-
8.
Quantifying Gq Signaling Using the IP1 Homogenous Time-Resolved Fluorescence (HTRF) Assay.
Jamaluddin, A
Methods in molecular biology (Clifton, N.J.). 2025;:23-32
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in cellular signaling and can regulate several cellular functions such as proliferation, secretion, protein expression, and cellular metabolism. Coupling of GPCRs to members of the Gq/11 protein family results in activation of inositol trisphosphate (IP3) and accumulation of calcium intracellularly. This protocol chapter outlines a step-by-step guide for utilizing the inositol phosphate-1 (IP1) accumulation assay, a time-resolved fluorescence resonance energy transfer (TR-FRET) method, to investigate Gq-IP3 signaling. The assay serves as a valuable tool for those conducting pharmacological investigations and compound screening targeting this critical cellular pathway. This protocol chapter covers experimental setup, sample preparation, and data analysis, providing researchers with an in-depth guide to explore the pharmacology of Gq-coupled receptors.
-
9.
A missense variant in SLC12A3 gene enhances aberrant splicing causing Gitelman syndrome.
Law, CY, Lui, DTW, Lau, E, Woo, CSL, Chang, JYC, Leung, EKH, Lee, ACH, Lee, CH, Woo, YC, Chow, WS, et al
Clinica chimica acta; international journal of clinical chemistry. 2025;:119924
Abstract
Gitelman syndrome (GS) is the most prevalent genetic tubulopathy characterized by several electrolyte abnormalities, including hypokalemia, hypomagnesemia, hypocalciuria, metabolic alkalosis, and hyperreninemic hyperaldosteronism. These features are caused by a bi-allelic mutation in the SLC12A3 gene. In this report, we present a case of GS in an asymptomatic woman who incidentally exhibited hypokalemia during an antenatal check-up. Her biochemical profile was consistent with GS. Genetic analysis revealed two heterozygous variants in trans, namely, NM_001126108.2:c.625C>T; p.(Arg209Trp) and c.965C>T; p.(Ala322Val). The c.625C>T; p.(Arg209Trp) variant has previously been experimentally confirmed as a loss-of-function (LOF) variant. However, the functional impact of the c.965C>T variant, located at the 5 prime end of exon 8, has not been fully elucidated. Through the utilization of both complementary DNA (cDNA) and minigene analysis, we confirmed that the c.965C>T variant can generate two distinct cDNA transcripts. The first transcript carries a missense mutation, p.(Ala322Val) in the full SLC12A3 transcript, while the second transcript consists of an in-frame deletion of both exons 7 and 8 in the SLC12A3 transcript, in which may result in the loss of transmembrane regions 5 - 6 involved in chloride transport. Our findings provide insights into the intricate mechanisms of splicing, highlighting how a variant in one exon can remotely influence the transcription of an upstream exon, as observed with the variant in exon 8 impacting the transcription of exon 7.
-
10.
Pyrroloquinoline quinone: a potential neuroprotective compound for neurodegenerative diseases targeting metabolism.
Canovai, A, Williams, PA
Neural regeneration research. 2025;(1):41-53
-
-
Free full text
-
Abstract
Pyrroloquinoline quinone is a quinone described as a cofactor for many bacterial dehydrogenases and is reported to exert an effect on metabolism in mammalian cells/tissues. Pyrroloquinoline quinone is present in the diet being available in foodstuffs, conferring the potential of this compound to be supplemented by dietary administration. Pyrroloquinoline quinone's nutritional role in mammalian health is supported by the extensive deficits in reproduction, growth, and immunity resulting from the dietary absence of pyrroloquinoline quinone, and as such, pyrroloquinoline quinone has been considered as a "new vitamin." Although the classification of pyrroloquinoline quinone as a vitamin needs to be properly established, the wide range of benefits for health provided has been reported in many studies. In this respect, pyrroloquinoline quinone seems to be particularly involved in regulating cell signaling pathways that promote metabolic and mitochondrial processes in many experimental contexts, thus dictating the rationale to consider pyrroloquinoline quinone as a vital compound for mammalian life. Through the regulation of different metabolic mechanisms, pyrroloquinoline quinone may improve clinical deficits where dysfunctional metabolism and mitochondrial activity contribute to induce cell damage and death. Pyrroloquinoline quinone has been demonstrated to have neuroprotective properties in different experimental models of neurodegeneration, although the link between pyrroloquinoline quinone-promoted metabolism and improved neuronal viability in some of such contexts is still to be fully elucidated. Here, we review the general properties of pyrroloquinoline quinone and its capacity to modulate metabolic and mitochondrial mechanisms in physiological contexts. In addition, we analyze the neuroprotective properties of pyrroloquinoline quinone in different neurodegenerative conditions and consider future perspectives for pyrroloquinoline quinone's potential in health and disease.