Biological Properties of Calcium Phosphate Bioactive Glass Composite Bone Substitutes: Current Experimental Evidence.

Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany. maria.karadjian@med.uni-heidelberg.de. Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany. christopher.essers@med.uni-heidelberg.de. Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany. stefanos.tsitlakidis@med.uni-heidelberg.de. Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany. bruno.reible@gmail.com. Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany. Arash.Moghaddam-Alvandi@klinikum-ab-alz.de. ATORG-Aschaffenburg Trauma and Orthopedics Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany. Arash.Moghaddam-Alvandi@klinikum-ab-alz.de. Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany. aldo.boccaccini@ww.uni-erlangen.de. Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany. Fabian.Westhauser@med.uni-heidelberg.de.

International journal of molecular sciences. 2019;(2)
Full text from:

Abstract

Standard treatment for bone defects is the biological reconstruction using autologous bone-a therapeutical approach that suffers from limitations such as the restricted amount of bone available for harvesting and the necessity for an additional intervention that is potentially followed by donor-site complications. Therefore, synthetic bone substitutes have been developed in order to reduce or even replace the usage of autologous bone as grafting material. This structured review focuses on the question whether calcium phosphates (CaPs) and bioactive glasses (BGs), both established bone substitute materials, show improved properties when combined in CaP/BG composites. It therefore summarizes the most recent experimental data in order to provide a better understanding of the biological properties in general and the osteogenic properties in particular of CaP/BG composite bone substitute materials. As a result, BGs seem to be beneficial for the osteogenic differentiation of precursor cell populations in-vitro when added to CaPs. Furthermore, the presence of BG supports integration of CaP/BG composites into bone in-vivo and enhances bone formation under certain circumstances.

Methodological quality

Publication Type : Review

Metadata