Signaling from Intestine to the Host: How Bile Acids Regulate Intestinal and Liver Immunity.

Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy. michele.biagioli@unipg.it. Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy.

Handbook of experimental pharmacology. 2019;:95-108
Full text from:

Other resources

Abstract

Primary bile acids (BAs) are generated in the liver as the end products of cholesterol catabolism; they are then conjugated and accumulated in the gallbladder. After a meal ingestion, BAs are reversed into the duodenum to facilitate the lipid absorption. At the intestinal level, the 95% of BAs are reabsorbed and redirected into enterohepatic circulation; indeed only a small amount of them are then subjected to chemical modifications by the intestinal microbiota, which plays a very important role in the generation of secondary bile acids and in regulating host's metabolism and activity of the immune system. Behind their role in nutrients absorption, bile acids act as signaling molecules, activating several receptors, known as bile acid-activated receptors (BARs), including the farnesoid-X-receptor (FXR) and the G protein-coupled bile acid receptor 1 (GPBAR1 or Takeda G-protein receptor 5). Both receptors appear to contribute to maintain the tolerogenic state of the liver and intestine immunity. In particular, FXR and GPBAR1 are highly expressed in cells of innate immunity including intestinal and liver macrophages, dendritic cells, and natural killer T cells. In this chapter, we provide an overview on mechanisms through which FXR and GPBAR1 modulate the signaling between microbiota and intestinal and liver innate immune system. This overview could help to explain beneficial effects exerted by GPBAR1 and FXR agonists in the treatment of metabolic and immuno-mediated diseases.

Methodological quality

Publication Type : Review

Metadata