Artificial Polymers made of α-amino Acids - Poly(Amino Acid)s, Pseudo-Poly(Amino Acid)s, Poly(Depsipeptide)s, and Pseudo-Proteins.

Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, # 240 David Aghmashenebeli Alley, Tbilisi 0131, Georgia. Departament d'Enginyeria Quimica, EEBE, Universitat Politecnica de Catalunya, Edifici I.2, C/Eduard Maristany, 10-14, Barcelona 08019, Spain.

Current pharmaceutical design. 2020;(5):566-593

Other resources

Abstract

Degradable polymers (DPs) - "green materials" of the future, have an innumerable use in biomedicine, particularly in the fields of tissue engineering and drug delivery. Among these kind of materials naturally occurring polymers - proteins which constituted one of the most important "bricks of life" - α-amino acids (AAs) are highly suitable. A wide biomedical applicability of proteins is due to special properties such as a high affinity with tissues and releasing AAs upon biodegradation that means a nutritive potential for cells. Along with these positive characteristics proteins as biomedical materials they have some shortcomings, such as batch-to-batch variation, risk of disease transmission, and immune rejection. The last limitation is connected with the molecular architecture of proteins. Furthermore, the content of only peptide bonds in protein molecules significantly restricts their material properties. Artificial polymers with the composition of AAs are by far more promising as degradable biomaterials since they are free from the limitations of proteins retaining at the same time their positive features - a high tissue compatibility and nutritive potential. The present review deals with a brief description of different families of AA-based artificial polymers, such as poly(amino acid)s, pseudo-poly(amino acid)s, polydepsipeptides, and pseudo-proteins - relatively new and broad family of artificial AA-based DPs. Most of these polymers have a different macromolecular architecture than proteins and contain various types of chemical links along with NH-CO bonds that substantially expands properties of materials destined for sophisticated biomedical applications.

Methodological quality

Publication Type : Review

Metadata