The origins of allergy from a systems approach.

Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California. Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California; Department of Medicine, Stanford University School of Medicine, Stanford, California. Electronic address: knadeau@stanford.edu.

Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology. 2020;(5):507-516
Full text from:

Abstract

OBJECTIVE The origins of allergic diseases have traditionally been explained by immunoglobulin E-mediated immune responses to account for asthma, atopic dermatitis, atopic rhinitis, and food allergy. Research insights into disease origins support a broader array of factors that predispose, initiate, or exacerbate altered immunity in allergic diseases, such as (1) inherent epithelial barrier dysfunction; (2) loss of immune tolerance; (3) disturbances in the gut; and (4) organ-specific microbiomes, diet, and age. Here, we discuss these influences that together form a better understanding of allergy as a systems disease. DATA SOURCES We summarize recent advances in epithelial dysfunction, environmental influences, inflammation, infection, alterations in the specific microbiome, and inherent genetic predisposition. STUDY SELECTIONS We performed a literature search targeting primary and review articles. RESULTS We explored microbial-epithelial-immune interactions underlying the early-life origins of allergic disorders and evaluated immune mechanisms suggesting novel disease prevention or intervention strategies. Damage to epithelial surfaces lies at the origin of various manifestations of allergic disease. As a sensor of environmental stimuli, the epithelium of the lungs, gut, and skin is affected by an altered microbiome, air pollution, food allergens in a changed diet, and chemicals in modern detergents. This collectively leads to alterations of lung, skin, or gut epithelial surfaces, driving a type 2 immune response that underlies atopic diseases. Treatment and prevention of allergic diseases include biologics, oral desensitization, targeted gut microbiome alterations, and changes in behavior. CONCLUSION Understanding the spectrum of allergy as a systems disease will allow us to better define the mechanisms of allergic disorders and improve their treatment.

Methodological quality

Publication Type : Review

Metadata