1.
The Role of Nutrition in COVID-19 Susceptibility and Severity of Disease: A Systematic Review.
James, PT, Ali, Z, Armitage, AE, Bonell, A, Cerami, C, Drakesmith, H, Jobe, M, Jones, KS, Liew, Z, Moore, SE, et al
The Journal of nutrition. 2021;(7):1854-1878
-
-
Free full text
-
Abstract
BACKGROUND Many nutrients have powerful immunomodulatory actions with the potential to alter susceptibility to coronavirus disease 2019 (COVID-19) infection, progression to symptoms, likelihood of severe disease, and survival. OBJECTIVE The aim was to review the latest evidence on how malnutrition across all its forms (under- and overnutrition and micronutrient status) may influence both susceptibility to, and progression of, COVID-19. METHODS We synthesized information on 13 nutrition-related components and their potential interactions with COVID-19: overweight, obesity, and diabetes; protein-energy malnutrition; anemia; vitamins A, C, D, and E; PUFAs; iron; selenium; zinc; antioxidants; and nutritional support. For each section we provide: 1) a landscape review of pertinent material; 2) a systematic search of the literature in PubMed and EMBASE databases, including a wide range of preprint servers; and 3) a screen of 6 clinical trial registries. All original research was considered, without restriction to study design, and included if it covered: 1) severe acute respiratory syndrome coronavirus (CoV) 2 (SARS-CoV-2), Middle East respiratory syndrome CoV (MERS-CoV), or SARS-CoV viruses and 2) disease susceptibility or 3) disease progression, and 4) the nutritional component of interest. Searches took place between 16 May and 11 August 2020. RESULTS Across the 13 searches, 2732 articles from PubMed and EMBASE, 4164 articles from the preprint servers, and 433 trials were returned. In the final narrative synthesis, we include 22 published articles, 38 preprint articles, and 79 trials. CONCLUSIONS Currently there is limited evidence that high-dose supplements of micronutrients will either prevent severe disease or speed up recovery. However, results of clinical trials are eagerly awaited. Given the known impacts of all forms of malnutrition on the immune system, public health strategies to reduce micronutrient deficiencies and undernutrition remain of critical importance. Furthermore, there is strong evidence that prevention of obesity and type 2 diabetes will reduce the risk of serious COVID-19 outcomes. This review is registered at PROSPERO as CRD42020186194.
2.
Anemia and iron metabolism in COVID-19: a systematic review and meta-analysis.
Taneri, PE, Gómez-Ochoa, SA, Llanaj, E, Raguindin, PF, Rojas, LZ, Roa-Díaz, ZM, Salvador, D, Groothof, D, Minder, B, Kopp-Heim, D, et al
European journal of epidemiology. 2020;(8):763-773
-
-
Free full text
-
Abstract
Iron metabolism and anemia may play an important role in multiple organ dysfunction syndrome in Coronavirus disease 2019 (COVID-19). We conducted a systematic review and meta-analysis to evaluate biomarkers of anemia and iron metabolism (hemoglobin, ferritin, transferrin, soluble transferrin receptor, hepcidin, haptoglobin, unsaturated iron-binding capacity, erythropoietin, free erythrocyte protoporphyrine, and erythrocyte indices) in patients diagnosed with COVID-19, and explored their prognostic value. Six bibliographic databases were searched up to August 3rd 2020. We included 189 unique studies, with data from 57,563 COVID-19 patients. Pooled mean hemoglobin and ferritin levels in COVID-19 patients across all ages were 129.7 g/L (95% Confidence Interval (CI), 128.51; 130.88) and 777.33 ng/mL (95% CI, 701.33; 852.77), respectively. Hemoglobin levels were lower with older age, higher percentage of subjects with diabetes, hypertension and overall comorbidities, and admitted to intensive care. Ferritin level increased with older age, increasing proportion of hypertensive study participants, and increasing proportion of mortality. Compared to moderate cases, severe COVID-19 cases had lower hemoglobin [weighted mean difference (WMD), - 4.08 g/L (95% CI - 5.12; - 3.05)] and red blood cell count [WMD, - 0.16 × 1012 /L (95% CI - 0.31; - 0.014)], and higher ferritin [WMD, - 473.25 ng/mL (95% CI 382.52; 563.98)] and red cell distribution width [WMD, 1.82% (95% CI 0.10; 3.55)]. A significant difference in mean ferritin levels of 606.37 ng/mL (95% CI 461.86; 750.88) was found between survivors and non-survivors, but not in hemoglobin levels. Future studies should explore the impact of iron metabolism and anemia in the pathophysiology, prognosis, and treatment of COVID-19.