-
1.
The potential role of resveratrol as supportive antiviral in treating conditions such as COVID-19 - A formulator's perspective.
van Brummelen, R, van Brummelen, AC
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022;:112767
-
-
Free full text
-
Abstract
With an increased transmissibility but milder form of disease of the omicron variant of COVID-19 and the newer antivirals often still out of reach of many populations, a refocus of the current treatment regimens is required. Safe, affordable, and available adjuvant treatments should also be considered and known drugs and substances need to be repurposed and tested. Resveratrol, a well-known antioxidant of natural origin, shown to act as an antiviral as well as playing a role in immune stimulation, down regulation of the pro-inflammatory cytokine release and reducing lung injury by reducing oxidative stress, is such an option. New initiatives and collaborations will however need to be found to unleash resveratrol's full potential in the pharmaceutical market.
-
2.
Does Oxidative Stress Management Help Alleviation of COVID-19 Symptoms in Patients Experiencing Diabetes?
Paul, AK, Hossain, MK, Mahboob, T, Nissapatorn, V, Wilairatana, P, Jahan, R, Jannat, K, Bondhon, TA, Hasan, A, de Lourdes Pereira, M, et al
Nutrients. 2022;(2)
Abstract
Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease 2019 (COVID-19) with other comorbidities such as diabetes. Diabetes is the most common cause of diabetic nephropathy, which is attributed to hyperglycemia. COVID-19 produces severe complications in people with diabetes mellitus. This article explains how SARS-CoV-2 causes more significant kidney damage in diabetic patients. Importantly, COVID-19 and diabetes share inflammatory pathways of disease progression. SARS-CoV-2 binding with ACE-2 causes depletion of ACE-2 (angiotensin-converting enzyme 2) from blood vessels, and subsequently, angiotensin-II interacts with angiotensin receptor-1 from vascular membranes that produce NADPH (nicotinamide adenine dinucleotide hydrogen phosphate) oxidase, oxidative stress, and constriction of blood vessels. Since diabetes and COVID-19 can create oxidative stress, we hypothesize that COVID-19 with comorbidities such as diabetes can synergistically increase oxidative stress leading to end-stage renal failure and death. Antioxidants may therefore prevent renal damage-induced death by inhibiting oxidative damage and thus can help protect people from COVID-19 related comorbidities. A few clinical trials indicated how effective the antioxidant therapy is against improving COVID-19 symptoms, based on a limited number of patients who experienced COVID-19. In this review, we tried to understand how effective antioxidants (such as vitamin D and flavonoids) can act as food supplements or therapeutics against COVID-19 with diabetes as comorbidity based on recently available clinical, preclinical, or in silico studies.
-
3.
Recent Progress in Applicability of Exercise Immunology and Inflammation Research to Sports Nutrition.
Suzuki, K
Nutrients. 2021;(12)
Abstract
This article focuses on how nutrition may help prevent and/or assist with recovery from the harmful effects of strenuous acute exercise and physical training (decreased immunity, organ injury, inflammation, oxidative stress, and fatigue), with a focus on nutritional supplements. First, the effects of ketogenic diets on metabolism and inflammation are considered. Second, the effects of various supplements on immune function are discussed, including antioxidant defense modulators (vitamin C, sulforaphane, taheebo), and inflammation reducers (colostrum and hyperimmunized milk). Third, how 3-hydroxy-3-methyl butyrate monohydrate (HMB) may offset muscle damage is reviewed. Fourth and finally, the relationship between exercise, nutrition and COVID-19 infection is briefly mentioned. While additional verification of the safety and efficacy of these supplements is still necessary, current evidence suggests that these supplements have potential applications for health promotion and disease prevention among athletes and more diverse populations.
-
4.
Melatonin interferes with COVID-19 at several distinct ROS-related steps.
Camp, OG, Bai, D, Gonullu, DC, Nayak, N, Abu-Soud, HM
Journal of inorganic biochemistry. 2021;:111546
-
-
Free full text
-
Abstract
Recent studies have shown a correlation between COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the distinct, exaggerated immune response titled "cytokine storm". This immune response leads to excessive production and accumulation of reactive oxygen species (ROS) that cause clinical signs characteristic of COVID-19 such as decreased oxygen saturation, alteration of hemoglobin properties, decreased nitric oxide (NO) bioavailability, vasoconstriction, elevated cytokines, cardiac and/or renal injury, enhanced D-dimer, leukocytosis, and an increased neutrophil to lymphocyte ratio. Particularly, neutrophil myeloperoxidase (MPO) is thought to be especially abundant and, as a result, contributes substantially to oxidative stress and the pathophysiology of COVID-19. Conversely, melatonin, a potent MPO inhibitor, has been noted for its anti-inflammatory, anti-oxidative, anti-apoptotic, and neuroprotective actions. Melatonin has been proposed as a safe therapeutic agent for COVID-19 recently, having been given with a US Food and Drug Administration emergency authorized cocktail, REGEN-COV2, for management of COVID-19 progression. This review distinctly highlights both how the destructive interactions of HOCl with tetrapyrrole rings may contribute to oxygen deficiency and hypoxia, vitamin B12 deficiency, NO deficiency, increased oxidative stress, and sleep disturbance, as well as how melatonin acts to prevent these events, thereby improving COVID-19 prognosis.
-
5.
Vitamin C and COVID-19 treatment: A systematic review and meta-analysis of randomized controlled trials.
Rawat, D, Roy, A, Maitra, S, Gulati, A, Khanna, P, Baidya, DK
Diabetes & metabolic syndrome. 2021;(6):102324
-
-
Free full text
-
Abstract
BACKGROUND AND AIMS Vitamin C has been used as an anti-oxidant in various diseases including viral illnesses like coronavirus disease (COVID-19). METHODS Meta-analysis of randomized controlled trials (RCT) investigating the role of vitamin C supplementation in COVID-19 was carried out. RESULTS Total 6 RCTs including n = 572 patients were included. Vitamin C treatment didn't reduce mortality (RR 0.73, 95% CI 0.42 to 1.27; I2 = 0%; P = 0.27), ICU length of stay [SMD 0.29, 95% CI -0.05 to 0.63; I2 = 0%; P = 0.09), hospital length of stay (SMD -0.23, 95% CI -1.04 to 0.58; I2 = 92%; P = 0.57) and need for invasive mechanical ventilation (Risk Ratio 0.93, 95% CI 0.61 to 1.44; I2 = 0%; P = 0.76). Further sub-group analysis based on severity of illness (severe vs. non-severe), route of administration (IV vs. oral) and dose (high vs. low) failed to show any observable benefits. CONCLUSION No significant benefit noted with vitamin C administration in COVID-19. Well-designed RCTs with standardized control group needed on this aspect.
-
6.
The efficacy of N-Acetylcysteine in severe COVID-19 patients: A structured summary of a study protocol for a randomised controlled trial.
Rahimi, A, Samimagham, HR, Azad, MH, Hooshyar, D, Arabi, M, KazemiJahromi, M
Trials. 2021;(1):271
Abstract
OBJECTIVES Severe acute respiratory infection (SARI) caused by the SARS-CoV-2 virus may cause lung failure and the need for mechanical ventilation. Infection with SARS-COV-2 can lead to activation of inflammatory factors, increased reactive oxygen species, and cell damage. In addition to mucolytic effects, N-Acetylcysteine has antioxidant effects that we believe can help patients recover. In this study, we evaluate the efficacy of N-Acetylcysteine in patients with severe COVID-19. TRIAL DESIGN This is a prospective, randomized, single-blinded, phase 3 controlled clinical trial with two arms (ratio 1:1) parallel-group design of 40 patients, using the placebo in the control group. PARTICIPANTS All severe COVID-19 patients with at least one of the following five conditions: (respiration rate > 30 per minute), hypoxemia (O2 ≤ saturation, arterial oxygen partial pressure ratio <300), pulmonary infiltration (> 50% of lung area during 24 48 h), Lactate dehydrogenase (LDH) > 245 U / l, Progressive lymphopenia, and admitted to the intensive care unit of Shahid Mohammadi Hospital in Bandar Abbas and have positive PCR test results for SARS-Cov-2 and sign the written consent of the study will be included. Patients will be excluded from the study if they have a history of hypersensitivity to N-Acetylcysteine, pregnancy, or refuse to participate in the study. INTERVENTION AND COMPARATOR After randomization, participants in the intervention group receive standard of care (SOC) according to the National Committee of COVID-19 plus N-acetylcysteine (EXI-NACE 200mg/mL, in 10mL ampules of saline for parenteral injection (EXIR pharmaceutical company)) at a dose of 300 mg/kg equivalent to 20 gr as a slow single intravenous injection on the first day of hospitalization. In the control group patients receive SOC and placebo ( Sterile water for injection as the same dose). The placebo is identical in appearance to the N-acetylcysteine injection (EXIR pharmaceutical company as well). MAIN OUTCOMES The primary endpoint for this study is a composite endpoint for the length of hospitalization in the intensive care unit and the patient's clinical condition. These outcomes were measured at the baseline (before the intervention) and on the 14th day after the intervention or on the discharge day. RANDOMISATION Eligible participants (40) will be randomized in two arms in the ratio of 1: 1 (20 per arm) using online web-based tools and by permuted block randomization method. To ensure randomization concealment, random sequence codes are assigned to patients by the treatment team at the time of admission without knowing that each code is in the intervention or comparator group. BLINDING (MASKING): All participants will be informed about participating in the study and the possible side effects of medication and placebo. Patients participating in the study will not be aware of the assignment to the intervention or control group. The principal investigator, health care personnel, data collectors, and those evaluating the outcome are aware of patient grouping. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A total of 40 patients participate in this study, which are randomly divided; 20 patients in the intervention group will receive SOC and N-acetylcysteine, 20 patients in the control group will receive SOC and placebo. TRIAL STATUS First version of the protocol was approved by the Deputy of Research and Technology and the ethics committee of Hormozgan University of Medical Sciences on February 14, 2021, with the local code 990573, and the recruitment started on March 2, 2021 and the expected recruitment end date is April 1, 2021. TRIAL REGISTRATION The protocol was registered before starting participant recruitment entitled: Evaluation of the efficacy of N-Acetylcysteine in severe COVID-19 patients: a randomized controlled phase III clinical trial, IRCT20200509047364N3 , at Iranian Registry of clinical trials on 20 February 2021. FULL PROTOCOL The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).
-
7.
Rationale for the use of N-acetylcysteine in both prevention and adjuvant therapy of COVID-19.
De Flora, S, Balansky, R, La Maestra, S
FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2020;(10):13185-13193
-
-
Free full text
-
Abstract
COVID-19 may cause pneumonia, acute respiratory distress syndrome, cardiovascular alterations, and multiple organ failure, which have been ascribed to a cytokine storm, a systemic inflammatory response, and an attack by the immune system. Moreover, an oxidative stress imbalance has been demonstrated to occur in COVID-19 patients. N- Acetyl-L-cysteine (NAC) is a precursor of reduced glutathione (GSH). Due to its tolerability, this pleiotropic drug has been proposed not only as a mucolytic agent, but also as a preventive/therapeutic agent in a variety of disorders involving GSH depletion and oxidative stress. At very high doses, NAC is also used as an antidote against paracetamol intoxication. Thiols block the angiotensin-converting enzyme 2 thereby hampering penetration of SARS-CoV-2 into cells. Based on a broad range of antioxidant and anti-inflammatory mechanisms, which are herein reviewed, the oral administration of NAC is likely to attenuate the risk of developing COVID-19, as it was previously demonstrated for influenza and influenza-like illnesses. Moreover, high-dose intravenous NAC may be expected to play an adjuvant role in the treatment of severe COVID-19 cases and in the control of its lethal complications, also including pulmonary and cardiovascular adverse events.
-
8.
Functional Role of Dietary Intervention to Improve the Outcome of COVID-19: A Hypothesis of Work.
Messina, G, Polito, R, Monda, V, Cipolloni, L, Di Nunno, N, Di Mizio, G, Murabito, P, Carotenuto, M, Messina, A, Pisanelli, D, et al
International journal of molecular sciences. 2020;(9)
Abstract
On the 31 December 2019, the World Health Organization (WHO) was informed of a cluster of cases of pneumonia of unknown origin detected in Wuhan City, Hubei Province, China. The infection spread first in China and then in the rest of the world, and on the 11th of March, the WHO declared that COVID-19 was a pandemic. Taking into consideration the mortality rate of COVID-19, about 5-7%, and the percentage of positive patients admitted to intensive care units being 9-11%, it should be mandatory to consider and take all necessary measures to contain the COVID-19 infection. Moreover, given the recent evidence in different hospitals suggesting IL-6 and TNF-α inhibitor drugs as a possible therapy for COVID-19, we aimed to highlight that a dietary intervention could be useful to prevent the infection and/or to ameliorate the outcomes during therapy. Considering that the COVID-19 infection can generate a mild or highly acute respiratory syndrome with a consequent release of pro-inflammatory cytokines, including IL-6 and TNF-α, a dietary regimen modification in order to improve the levels of adiponectin could be very useful both to prevent the infection and to take care of patients, improving their outcomes.
-
9.
Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression.
Schönrich, G, Raftery, MJ, Samstag, Y
Advances in biological regulation. 2020;:100741
Abstract
Pandemic coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and poses an unprecedented challenge to healthcare systems due to the lack of a vaccine and specific treatment options. Accordingly, there is an urgent need to understand precisely the pathogenic mechanisms underlying this multifaceted disease. There is increasing evidence that the immune system reacts insufficiently to SARS-CoV-2 and thus contributes to organ damage and to lethality. In this review, we suggest that the overwhelming production of reactive oxygen species (ROS) resulting in oxidative stress is a major cause of local or systemic tissue damage that leads to severe COVID-19. It increases the formation of neutrophil extracellular traps (NETs) and suppresses the adaptive arm of the immune system, i.e. T cells that are necessary to kill virus-infected cells. This creates a vicious cycle that prevents a specific immune response against SARS-CoV-2. The key role of oxidative stress in the pathogenesis of severe COVID-19 implies that therapeutic counterbalancing of ROS by antioxidants such as vitamin C or NAC and/or by antagonizing ROS production by cells of the mononuclear phagocyte system (MPS) and neutrophil granulocytes and/or by blocking of TNF-α can prevent COVID-19 from becoming severe. Controlled clinical trials and preclinical models of COVID-19 are needed to evaluate this hypothesis.