1.
The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators.
Habib, HM, Ibrahim, S, Zaim, A, Ibrahim, WH
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021;:111228
-
-
Free full text
-
Abstract
Iron overload is increasingly implicated as a contributor to the pathogenesis of COVID-19. Indeed, several of the manifestations of COVID-19, such as inflammation, hypercoagulation, hyperferritinemia, and immune dysfunction are also reminiscent of iron overload. Although iron is essential for all living cells, free unbound iron, resulting from iron dysregulation and overload, is very reactive and potentially toxic due to its role in the generation of reactive oxygen species (ROS). ROS react with and damage cellular lipids, nucleic acids, and proteins, with consequent activation of either acute or chronic inflammatory processes implicated in multiple clinical conditions. Moreover, iron-catalyzed lipid damage exerts a direct causative effect on the newly discovered nonapoptotic cell death known as ferroptosis. Unlike apoptosis, ferroptosis is immunogenic and not only leads to amplified cell death but also promotes a series of reactions associated with inflammation. Iron chelators are generally safe and are proven to protect patients in clinical conditions characterized by iron overload. There is also an abundance of evidence that iron chelators possess antiviral activities. Furthermore, the naturally occurring iron chelator lactoferrin (Lf) exerts immunomodulatory as well as anti-inflammatory effects and can bind to several receptors used by coronaviruses thereby blocking their entry into host cells. Iron chelators may consequently be of high therapeutic value during the present COVID-19 pandemic.
2.
Iron: Innocent bystander or vicious culprit in COVID-19 pathogenesis?
Edeas, M, Saleh, J, Peyssonnaux, C
International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2020;:303-305
-
-
Free full text
-
Abstract
The coronavirus 2 (SARS-CoV-2) pandemic is viciously spreading through the continents with rapidly increasing mortality rates. Current management of COVID-19 is based on the premise that respiratory failure is the leading cause of mortality. However, mounting evidence links accelerated pathogenesis in gravely ill COVID-19 patients to a hyper-inflammatory state involving a cytokine storm. Several components of the heightened inflammatory state were addressed as therapeutic targets. Another key component of the heightened inflammatory state is hyper-ferritinemia which reportedly identifies patients with increased mortality risk. In spite of its strong association with mortality, it is not yet clear if hyper-ferritinemia in COVID-19 patients is merely a systemic marker of disease progression, or a key modulator in disease pathogenesis. Here we address implications of a possible role for hyper-ferritinemia, and altered iron homeostasis in COVID-19 pathogenesis, and potential therapeutic targets in this regard.