1.
Role of ACE2-Ang (1-7)-Mas axis in post-COVID-19 complications and its dietary modulation.
Sahu, S, Patil, CR, Kumar, S, Apparsundaram, S, Goyal, RK
Molecular and cellular biochemistry. 2022;(1):225-240
-
-
Free full text
-
Abstract
Severe acute respiratory syndrome-coronavirus-2 (COVID-19) virus uses Angiotensin-Converting Enzyme 2 (ACE2) as a gateway for their entry into the human body. The ACE2 with cleaved products have emerged as major contributing factors to multiple physiological functions and pathogenic complications leading to the clinical consequences of the COVID-19 infection Decreased ACE2 expression restricts the viral entry into the human cells and reduces the viral load. COVID-19 infection reduces the ACE2 expression and induces post-COVID-19 complications like pneumonia and lung injury. The modulation of the ACE2-Ang (1-7)-Mas (AAM) axis is also being explored as a modality to treat post-COVID-19 complications. Evidence indicates that specific food components may modulate the AAM axis. The variations in the susceptibility to COVID-19 infection and the post-COVID its complications are being correlated with varied dietary habits. Some of the food substances have emerged to have supportive roles in treating post-COVID-19 complications and are being considered as adjuvants to the COVID-19 therapy. It is possible that some of their active ingredients may emerge as the direct treatment for the COVID-19.
2.
Predictive value of cardiac markers in the prognosis of COVID-19 in children.
Güllü, UU, Güngör, Ş, İpek, S, Yurttutan, S, Dilber, C
The American journal of emergency medicine. 2021;:307-311
-
-
Free full text
-
Abstract
BACKGROUND AND AIM Occasionally, children with COVID-19 may develop arrhythmia, myocarditis, and cardiogenic shock involving multisystemic inflammatory syndrome in children (MIS-C). This study aimed to identify the laboratory parameters that may predict early cardiovascular involvement in these patients. MATERIALS AND METHODS Data of 320 pediatric patients, aged 0-18 years (average age, 10.46 ± 5.77 years; 156 female), with positive COVID-19 reverse transcription-polymerase chain reaction test and with cardiac biomarkers at the time of admission to the pediatric emergency department were retrospectively scanned. The age, sex, COVID-19-associated symptoms, pro-brain natriuretic peptide (proBNP), CK-MB, and troponin I levels of the patients were recorded. RESULTS Fever was noted in 58.1% of the patients, cough in 29.7%, diarrhea in 7.8%, headache in 14.7%, sore throat in 17.8%, weakness in 17.8%, abdominal pain in 5%, loss of taste in 4.1%, loss of smell in 5.3%, nausea in 3.4%, vomiting in 3.8%, nasal discharge in 4.4%, muscle pain in 5%, and loss of appetite in 3.1%. The proBNP value ≥282 ng/L predicted the development of MIS-C with 100% sensitivity and 93% specificity [AUC: 0.985 (0.959-1), P < 0.001]; CK-MB value ≥2.95 with 80% sensitivity and 77.6% specificity [AUC: 0.792 (0.581-1), P = 0.026]; and troponin I value ≥0.03 with 60% sensitivity and 99.2% specificity [AUC: 0.794 (0.524-1)]. CONCLUSIONS Cardiac markers (proBNP and troponin I), especially proBNP, could be used to detect early diagnosis of cardiac involvement and/or MIS-C in pediatric patients with COVID-19 and to predict related morbidity and mortality.
3.
MR-proADM as marker of endotheliitis predicts COVID-19 severity.
García de Guadiana-Romualdo, L, Calvo Nieves, MD, Rodríguez Mulero, MD, Calcerrada Alises, I, Hernández Olivo, M, Trapiello Fernández, W, González Morales, M, Bolado Jiménez, C, Albaladejo-Otón, MD, Fernández Ovalle, H, et al
European journal of clinical investigation. 2021;(5):e13511
-
-
Free full text
-
Abstract
BACKGROUND Early identification of patients at high risk of progression to severe COVID-19 constituted an unsolved challenge. Although growing evidence demonstrates a direct association between endotheliitis and severe COVID-19, the role of endothelial damage biomarkers has been scarcely studied. We investigated the relationship between circulating mid-regional proadrenomedullin (MR-proADM) levels, a biomarker of endothelial dysfunction, and prognosis of SARS-CoV-2-infected patients. METHODS Prospective observational study enrolling adult patients with confirmed COVID-19. On admission to emergency department, a blood sample was drawn for laboratory test analysis. Primary and secondary endpoints were 28-day all-cause mortality and severe COVID-19 progression. Area under the curve (AUC) and multivariate regression analysis were employed to assess the association of the biomarker with the established endpoints. RESULTS A total of 99 patients were enrolled. During hospitalization, 25 (25.3%) cases progressed to severe disease and the 28-day mortality rate was of 14.1%. MR-proADM showed the highest AUC to predict 28-day mortality (0.905; [CI] 95%: 0.829-0.955; P < .001) and progression to severe disease (0.829; [CI] 95%: 0.740-0.897; P < .001), respectively. MR-proADM plasma levels above optimal cut-off (1.01 nmol/L) showed the strongest independent association with 28-day mortality risk (hazard ratio [HR]: 10.470, 95% CI: 2.066-53.049; P < .005) and with progression to severe disease (HR: 6.803, 95% CI: 1.458-31.750; P = .015). CONCLUSION Mid-regional proadrenomedullin was the biomarker with highest performance for prognosis of death and progression to severe disease in COVID-19 patients and represents a promising predictor for both outcomes, which might constitute a potential tool in the assessment of prognosis in early stages of this disease.