-
1.
Effects of Loigolactobacillus coryniformis K8 CECT 5711 on the Immune Response of Elderly Subjects to COVID-19 Vaccination: A Randomized Controlled Trial.
Fernández-Ferreiro, A, Formigo-Couceiro, FJ, Veiga-Gutierrez, R, Maldonado-Lobón, JA, Hermida-Cao, AM, Rodriguez, C, Bañuelos, O, Olivares, M, Blanco-Rojo, R
Nutrients. 2022;(1)
Abstract
Elderly people are particularly vulnerable to COVID-19, with a high risk of developing severe disease and a reduced immune response to the COVID-19 vaccine. A randomized, placebo-controlled, double-blind trial to assess the effect of the consumption of the probiotic Loigolactobacillus coryniformis K8 CECT 5711 on the immune response generated by the COVID-19 vaccine in an elderly population was performed. Two hundred nursing home residents >60 yrs that had not COVID-19 were randomized to receive L. coryniformis K8 or a placebo daily for 3 months. All volunteers received a complete vaccination schedule of a mRNA vaccine, starting the intervention ten days after the first dose. Specific IgG and IgA antibody levels were analyzed 56 days after the end of the immunization process. No differences between the groups were observed in the antibody levels. During the intervention, 19 subjects had COVID-19 (11 receiving K8 vs. 8 receiving placebo, p = 0.457). Subgroup analysis in these patients showed that levels of IgG were significantly higher in those receiving K8 compared to placebo (p = 0.038). Among subjects >85 yrs that did not get COVID-19, administration of K8 tended to increase the IgA levels (p = 0.082). The administration of K8 may enhance the specific immune response against COVID-19 and may improve the COVID-19 vaccine-specific responses in elderly populations.
-
2.
Probiotics and Covid-19.
Bottari, B, Castellone, V, Neviani, E
International journal of food sciences and nutrition. 2021;(3):293-299
Abstract
Coronavirus disease 2019 (COVID-19) has become pandemic very rapidly at the beginning of 2020. In the rush to possible therapeutic options, probiotics administration has been proposed mainly based on indirect observation. Some evidence of COVID-19 effects on intestinal microbiota dysbiosis has been shown and probiotics have been considered for their efficacy in the management of respiratory tract viral infections. These observations could be reinforced by the more and more evident existence of a lung-gut axis, suggesting the modulation of gut microbiota among the approaches to the COVID-19 prevention and treatment. As different possible roles of probiotics in this extremely severe illness have been contemplated, the aim of this work is to collect all the currently available information related to this topic, providing a starting point for future studies focussing on it.
-
3.
Effects of Probiotics in Conditions or Infections Similar to COVID-19 on Health Outcomes: An Evidence Analysis Center Scoping Review.
Rozga, M, Cheng, FW, Handu, D
Journal of the Academy of Nutrition and Dietetics. 2021;(9):1841-1854
-
-
Free full text
-
Abstract
Probiotics have been suggested as a potential intervention for improving outcomes, particularly ventilatory-associated pneumonia, in patients infected with coronavirus disease 2019 (COVID-19). However, with the rapid development of the COVID-19 pandemic, there is little direct evidence available in infected patients. The objective of this scoping review is to examine the availability and nature of literature describing the effect of probiotics in adults with conditions or infections similar to COVID-19 infection on related health outcomes. MEDLINE, Cumulative Index to Nursing & Allied Health Literature, and Cochrane Databases were searched for studies published from 1999 to May 1, 2020, examining the effect of probiotics in conditions applicable to individuals infected with COVID-19, including, but not limited to, other forms of coronavirus, critical illness, and mechanical ventilation. The databases search identified 1925 unique articles, 77 full-text articles were reviewed, and 48 studies were included in this scoping review, including 31 primary studies and 17 systematic reviews. Primary studies examined a range of interventions that varied by probiotic diversity and types, including 8 studies that focused on synbiotics, which include both pre- and probiotics. Several systematic reviews examined the effect of probiotics on ventilator-associated pneumonia and other infections. Although most systematic reviews concluded probiotics may improve these outcomes, most systematic review authors concluded that the evidence was low in quality and high in heterogeneity. In the absence of direct evidence with patients infected with COVID-19, studies in comparable populations are currently the best resource to guide probiotics interventions in conjunction with clinical expertise and multidisciplinary health care planning.
-
4.
The effect of probiotics on respiratory tract infection with special emphasis on COVID-19: Systemic review 2010-20.
Darbandi, A, Asadi, A, Ghanavati, R, Afifirad, R, Darb Emamie, A, Kakanj, M, Talebi, M
International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2021;:91-104
-
-
Free full text
-
Abstract
To evaluate the effects of probiotics on respiratory tract infection (RTI) a systematic review of randomized controlled trials (RCTs) from January 2010 to January 2020 was conducted. The PubMed, Google Scholar, Embase, Scopus, Clinicaltrials.gov, and International Clinical Trials Registry Platform databases were systematically searched for the following keywords: respiratory tract infection, probiotics, viral infection, COVID-19, and clinical trial. A total of 27 clinical trials conducted on 9433 patients with RTI plus 10 ongoing clinical studies of probiotics intervention in Coronavirus disease 2019 (COVID-19) were reviewed. The review looked at the potency of probiotics for the hindrance and/or treatment of RTI diseases, this may also apply to COVID-19. The review found that probiotics could significantly increase the plasma levels of cytokines, the effect of influenza vaccine and quality of life, as well as reducing the titer of viruses and the incidence and duration of respiratory infections. These antiviral and immune-modulating activities and their ability to stimulate interferon production recommend the use of probiotics as an adjunctive therapy to prevent COVID-19. Based on this extensive review of RCTs we suggest that probiotics are a rational complementary treatment for RTI diseases and a viable option to support faster recovery.
-
5.
Probiotics: A potential immunomodulator in COVID-19 infection management.
Singh, K, Rao, A
Nutrition research (New York, N.Y.). 2021;:1-12
-
-
Free full text
-
Abstract
COVID-19 caused by SARS-CoV-2 is an ongoing global pandemic. SARS-CoV-2 affects the human respiratory tract's epithelial cells, leading to a proinflammatory cytokine storm and chronic lung inflammation. With numerous patients dying daily, a vaccine and specific antiviral drug regimens are being explored. Probiotics are live microorganisms with proven beneficial effects on human health. While probiotics as nutritional supplements are long practiced in different cuisines across various countries, the emerging scientific evidence supports the antiviral and general immune-strengthening health effects of the probiotics. Here, we present an overview of the experimental studies published in the last 10 years that provide a scientific basis for unexplored probiotics as a preventive approach to respiratory viral infections. Based on collated insights from these experimental data, we identify promising microbial strains that may serve as lead prophylactic and immune-boosting probiotics in COVID-19 management.
-
6.
Patient Nutrition and Probiotic Therapy in COVID-19: What Do We Know in 2021?
Hawryłkowicz, V, Lietz-Kijak, D, Kaźmierczak-Siedlecka, K, Sołek-Pastuszka, J, Stachowska, L, Folwarski, M, Parczewski, M, Stachowska, E
Nutrients. 2021;(10)
Abstract
BACKGROUND The main nutritional consequences of COVID-19 include reduced food intake, hypercatabolism, and rapid muscle wasting. Some studies showed that malnutrition is a significant problem among patients hospitalized due to COVID-19 infection, and the outcome of patients with SARS-CoV-2 is strongly associated with their nutritional status. The purpose of this study was to collect useful information about the possible elements of nutritional and probiotic therapy in patients infected with the SARS-CoV-2 virus. METHODS A narrative review of the literature, including studies published up to 13 September 2021. RESULTS Probiotics may support patients by inhibiting the ACE2 receptor, i.e., the passage of the virus into the cell, and may also be effective in suppressing the immune response caused by the proinflammatory cytokine cascade. In patients' diet, it is crucial to ensure an adequate intake of micronutrients, such as omega-3 fatty acids (at 2-4 g/d), selenium (300-450 μg/d) and zinc (30-50 mg/d), and vitamins A (900-700 µg/d), E (135 mg/d), D (20,000-50,000 IU), C (1-2 g/d), B6, and B12. Moreover, the daily calorie intake should amount to ≥1500-2000 with 75-100 g of protein. CONCLUSION In conclusion, the treatment of gut dysbiosis involving an adequate intake of prebiotic dietary fiber and probiotics could turn out to be an immensely helpful instrument for immunomodulation, both in COVID-19 patients and prophylactically in individuals with no history of infection.
-
7.
Potential beneficial role of probiotics on the outcome of COVID-19 patients: An evolving perspective.
Santacroce, L, Inchingolo, F, Topi, S, Del Prete, R, Di Cosola, M, Charitos, IA, Montagnani, M
Diabetes & metabolic syndrome. 2021;(1):295-301
-
-
Free full text
-
Abstract
BACKGROUND AND AIMS Probiotics can support the body's systems in fighting viral infections. This review is aimed to focus current knowledge about the use of probiotics as adjuvant therapy for COVID-19 patients. METHODS We performed an extensive research using the PubMed-LitCovid, Cochrane Library, Embase databases, and conducting manual searches on Google Scholar, Elsevier Connect, Web of Science about this issue. RESULTS We have found several papers reporting data about the potential role of probiotics as well as contrasting experimental data about it. CONCLUSIONS Most data show good results demonstrating that probiotics can play a significant role in fighting SARS-CoV-2 infection, also compared with their use in the past for various diseases. They seem effective in lowering inflammatory status, moreover in patients with chronic comorbidities such as cancer and diabetes, improving clinical outcomes.
-
8.
Probiotics reduce self-reported symptoms of upper respiratory tract infection in overweight and obese adults: should we be considering probiotics during viral pandemics?
Mullish, BH, Marchesi, JR, McDonald, JAK, Pass, DA, Masetti, G, Michael, DR, Plummer, S, Jack, AA, Davies, TS, Hughes, TR, et al
Gut microbes. 2021;(1):1-9
-
-
Free full text
-
Abstract
Gut microbiome manipulation to alter the gut-lung axis may potentially protect humans against respiratory infections, and clinical trials of probiotics show promise in this regard in healthy adults and children. However, comparable studies are lacking in overweight/obese people, who have increased risks in particular of viral upper respiratory tract infections (URTI). This Addendum further analyses our recent placebo-controlled trial of probiotics in overweight/obese people (focused initially on weight loss) to investigate the impact of probiotics upon the occurrence of URTI symptoms. As well as undergoing loss of weight and improvement in certain metabolic parameters, study participants taking probiotics experienced a 27% reduction in URTI symptoms versus control, with those ≥45 years or BMI ≥30 kg/m2 experiencing greater reductions. This symptom reduction is apparent within 2 weeks of probiotic use. Gut microbiome diversity remained stable throughout the study in probiotic-treated participants. Our data provide support for further trials to assess the potential role of probiotics in preventing viral URTI (and possibly also COVID-19), particularly in overweight/obese people.
-
9.
Probiotics-Derived Peptides and Their Immunomodulatory Molecules Can Play a Preventive Role Against Viral Diseases Including COVID-19.
Manna, S, Chowdhury, T, Chakraborty, R, Mandal, SM
Probiotics and antimicrobial proteins. 2021;(3):611-623
-
-
Free full text
-
Abstract
As of recent, the pandemic episode of COVID-19, a severe acute respiratory syndrome brought about by a novel coronavirus (SARS-CoV-2) expanding the pace of mortality, has affected the disease rate profoundly. Invulnerability is the fundamental choice to prevent the ruining event of COVID-19, as the drugs and antibodies are in the phase of preliminary clinical trials. Within this brief period, a few strains of SARS-CoV-2 have been recognized by the vaccine manufacturers, which could be an incorrect guess about the strain that will end up spreading. Since the circulating SARS-CoV-2 strains continue to mutate, immunizations, if at all works, might be for a restricted time. We have not put sufficient time in research to understand the immune responses that correlate with protection as this could help refine vaccines. Here, we have summed up the adequacy of the immunomodulatory component of probiotics for the prevention against viral infections. Furthermore, an in silico data have been provided in support of the "probiotics-derived lipopeptides" role in inactivating spike (S) glycoprotein of SARS-CoV-2 and its host receptor molecule, ACE2. Among well characterized lipopeptides derived from different probiotic strains, subtilisin (Bacillus amyloliquefaciens), curvacin A (Lactobacillus curvatus), sakacin P (Lactobacillus sakei), lactococcin Gb (Lactococcus lactis) was utilized in this study to demonstrate a higher binding proclivity to S-protein of SARS-CoV-2 and human ACE2. The outcome revealed noteworthy capabilities of the lipopeptides, due to their amphiphilic nature, to bind spike protein and receptor molecule, which may act to competitively inhibit the mandatory interaction of SARS-CoV-2 with the host epithelial cell expressing ACE2 for its entry into the cell for reproduction. In the current situation, probiotic treatment alongside chemotherapy may assist in bringing about substantial improvement of the health of COVID-19 patients. At the same time, probiotics may aid towards building up the immune defenses in people to evade COVID-19.
-
10.
The Effect of Bacterial Infections, Probiotics and Zonulin on Intestinal Barrier Integrity.
Serek, P, Oleksy-Wawrzyniak, M
International journal of molecular sciences. 2021;(21)
Abstract
The intestinal barrier plays an extremely important role in maintaining the immune homeostasis of the gut and the entire body. It is made up of an intricate system of cells, mucus and intestinal microbiota. A complex system of proteins allows the selective permeability of elements that are safe and necessary for the proper nutrition of the body. Disturbances in the tightness of this barrier result in the penetration of toxins and other harmful antigens into the system. Such events lead to various digestive tract dysfunctions, systemic infections, food intolerances and autoimmune diseases. Pathogenic and probiotic bacteria, and the compounds they secrete, undoubtedly affect the properties of the intestinal barrier. The discovery of zonulin, a protein with tight junction regulatory activity in the epithelia, sheds new light on the understanding of the role of the gut barrier in promoting health, as well as the formation of diseases. Coincidentally, there is an increasing number of reports on treatment methods that target gut microbiota, which suggests that the prevention of gut-barrier defects may be a viable approach for improving the condition of COVID-19 patients. Various bacteria-intestinal barrier interactions are the subject of this review, aiming to show the current state of knowledge on this topic and its potential therapeutic applications.